
Enabling an Accessible Web 2.0
 Becky Gibson

IBM Emerging Technologies
5 Technology Park Drive

Westford, MA USA
01 978 392-6101

gibsonb@us.ibm.com

ABSTRACT

The next generation of the Web is relying on new technologies to
build rich interfaces and applications which enable community,
collaboration, social networking and enhanced interactions. This
has implication for people with disabilities who have come to rely
on the Web to provide more independence, work opportunities,
and social interactions. New specifications such as Accessible
Rich Internet Applications (ARIA) are being developed which
provide more semantic information about Web components and
can enable enhanced accessibility. In addition, toolkits and testing
tools are making it easier to reach the nirvana of accessibility by
default in Web 2.0 projects.

Categories and Subject Descriptors

H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia – Navigation, User Issues. H.5.2
[Information Interfaces and Presentation]: User Interfaces –
Graphical User Interface, Interaction Styles. I.7.2 [Document
and Text Processing]: Document Preparation –
Hpertext/Hypermedia, Markup languages, Scripting languages.

General Terms
Design, Human Factors, Standardization, Languages

Keywords
Accessibility, ARIA, HTML, DHTML, JavaScript, Web 2.0

1. INTRODUCTION
The Web is constantly evolving and changing. In the beginning
the Web was a click, wait, replace model. A user would type a
Web address, and a page was loaded. To interact or get more
details about the current topic the user would provide information
via a form, click submit and wait for a new page to be
downloaded. The foundation of the Web was to be able to share
information. Until competent search engines were developed, the
user would click on provided links to traverse the myriad of data.
The Web opened up a vast world of knowledge to people. Except
it was, and still is, very visually oriented and relies on the mouse
interface to navigate.

Eventually the Web became more accessible. Mechanisms are
available and supported in Web browsers to provide keyboard
navigation and to enable assistive technologies to allow persons
with disabilities to use the Web. The Web Content Accessibility
Guidelines 1.0 were developed in the W3C to provide guidance
and techniques to make the Web Accessible [1]. The original
Web was not perfect but with some work by Web developers it
could be used by all.

Now we are entering the next generation of the Web – Web 2.0.
It is all about interaction, collaboration, and social networking. It
is more dynamic and fluid and no longer just static pages of
information. This presents yet another challenge for people with
disabilities. These new interaction models are pushing the limits
of the technologies of the Web and the ability of assistive
technologies to interpret the changing face of the Web.

This paper describes new technologies and tools being developed
to help enable accessibility for Web 2.0. The Accessible Rich
Internet Applications specification is adding semantic metadata to
the new rich user interface components being created on the Web.
Updates to accessibility application programming interfaces
provide the mechanism to communicate the advanced Web 2.0
features to assistive technologies. Toolkits make developing Web
2.0 faster and easier. And testing tools are advancing to assist
with the development and run-time testing of Web 2.0
applications.

2. WHAT IS WEB 2.0?
The term “Web 2.0” was coined by O’Reilly Media at a
conference in 2004 [2] and it has become the mechanism to refer
to the next generation Web. Rather than just a static repository
for data, the Web has become a platform for applications and the
enabler for on-line participation, collaboration, harnessing
collective intelligence [2] and more. The key concepts are
participation and dynamic interaction.

2.1 Web 2.0 Technologies
The most widely used technologies beyond basic HTML for
implementing Web 2.0 are scripting and Cascading Style Sheets
(CSS). The use of JavaScript to make Web sites more dynamic
has been growing steadily and CSS usage has been increasing
even faster. Today, 59% of sites use JavaScript and 54% use CSS.
This is up from 37% and 13% respectively in 2001 [3]. CSS
enables richly styled elements which can be explicitly places on
the page. Scripting provides the programming mechanism to
update styles, \perform calculations, add logic, validate data on
the client and dynamically update the page via XmlHttpRequest.

XmlHttpRequest (XHR) is an application programming interface
that can be used via JavaScript to transfer data over the standard
Web Http protocol to update portions of the page. The initial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
W4A2007 - Keynote, May 07–08, 2007, Banff, Canada. Co-Located
with the 16th International World Wide Web Conference.
Copyright 2007 ACM 1-59593-590-8/06/0010 ...$5.00.

implementation provided for transferring data via eXtended
Markup Language (XML) but other forms of data are now
common. Scripting and data transfer via XmlHttpRequest are the
original key technologies in the term Ajax – Asynchronous
JavaScript and XML. Ajax refers to dynamically updating only
portions of a page rather than the traditional Web 1.0 model of
requesting and reloading entire pages at a time.

With high speed internet connections becoming the norm,
multimedia is also becoming a big part of Web 2.0. Sites are
embedding video and sound, as well as using Adobe Flash to
create multimedia experiences. There are still hurdles to
overcome to provide captioning for live media presentations and
make easy captioning and transcription a reality. There are
documented techniques for making Flash more accessible [4].

2.2 Web 2.0 Implications
Web 2.0 technologies have changed the way the Web is used and
perceived. Rather than a mechanism to provide information, the
web is now interactive and harnessing the wisdom of many
through wikis, blogs, and communities. New terms have been
coined or resurrected to explain the new phenomenon;
crowdsourcing [5], social networking, collective intelligence and
more. Companies no longer only use the Web as a tool for
information dissemination and marketing but as a way to include
the customer base in design, development and support. Web 2.0
is about inclusion, harnessing the wisdom of many to reach new
conclusions and optimizing research and learning. There are even
virtual communities such as Second Life and World of Warcraft
Games where people can assume new personalities and build an
on-line reputation.

As the interactions get more complex, the user interfaces are also
becoming more rich and interactive. No longer can a site use
simple lists of links for navigation. The increased complexity of
sites are requiring more sophisticated user interface elements
similar to those of the desktop such as tree controls, tabbed
interfaces, floating dialogs, and toolbars. Users are no longer
satisfied to enter simple text in an HTML textarea element but
want to create styled, rich text when creating comments, emails,
and posts within social networking sites. This has implications
for accessibility and access by persons with disabilities.

2.3 Web 2.0 Accessibility Concerns
The Web has opened up many opportunities for people with
disabilities. People with disabilities rely on the web for everyday
tasks as well as for employment, learning and entertainment [6].
On-line shopping allows people with visual or mobility
impairments to shop independently without traveling to a physical
store location or requiring assistance from others. Learning
opportunities delivered via the web offer further education for
people from all walks of life and abilities. Virtual communities,
crowdsourcing, social and entertainment sites can all provide
important interaction, community and employment opportunities
to large numbers of people. While Web 2.0 can provide
enormous benefits, all of the new interaction paradigms are not
immediately accessible.

The basic Web has become fairly accessible to people with
disabilities but this was not always the case. Initially people using
assistive technologies such as screen readers, screen magnifiers,
and alternative input devices had difficulty interacting with the

web. Requirements by governments have forced companies to
address accessibility and to follow guidelines such as the W3C
Web Content Accessibility Guidelines to make the Web
accessible. However, the new Web 2.0 technologies are pushing
the limits of assistive technologies.

Web 2.0 uses scripting and other advanced technologies to create
visually appealing, highly interactive rich internet applications.
Most of these applications are very visual and rely on mouse
interactions to operate. Each Web 2.0 application wants to
distinguish itself from others based on a compelling visual design,
rich user interface and dynamic interaction. The incremental
update of pages which can provide performance and real-time
updates are not always accessible to people using assistive
technologies. The assistive technology is not always able to
interpret the user interaction model, nor is aware of the many
updates occurring with a page or how to notify the user of the
changes. Even for users able to visually interact with a site, the
complicated interactions, and updates may be overwhelming or
confusing. The use of additional semantics, adaptive interfaces
and navigation options can make Web 2.0 more accessible.

3. Technologies to Enable an Accessible Web
2.0
Just as accessibility was not immediately in place when the Web
first emerged, there is still work to be done to make Web 2.0 fully
accessible. New specifications can add additional semantics into
a Web page or application to enable assistive technologies to
better represent the interfaces and interactions to the user.
Extended accessibility application programming interfaces (APIs)
will provide more comprehensive information to assistive
technologies. The semantic Web will enable strategies to adapt
the user interface to the specific needs of the user.

3.1 Accessible Rich Internet Applications
Accessible Rich Internet Applications (ARIA) is a specification
being brought forward by the W3C Web Accessibility Initiative’s
(WAI) Protocols and Formats Working Group. The goal of ARIA
is to add additional semantic data into HTML and XHTML to
allow assistive technologies to better represent user interface
components and dynamic interactions to the user. The
specification also addresses providing input focus and full
keyboard navigation within the components of an application. [7]

3.1.1 Providing Additional Semantics
Many of the elements in HTML have standard roles and
properties which are known by the browsers and conveyed to
assistive technologies via operating system accessibility APIs.
These include link elements, form elements, lists, and headings.
Web 2.0 requires more sophisticated components such as tree
controls, tab panels, pop-up dialogs, rich text editing components,
updated regions, on-line chat, and more. Most developers use
generic elements such as <div> and <spans> with scripting to
create these additional controls and interface elements.
XmlHttpRequest allows the page and the components to be
updated dynamically as data changes or for navigation over large
data sets. An assistive technology has no semantic information
about these created components and dynamic updates.

Desktop applications already implement many of these controls
and the accessibility APIs have mechanisms to describe these

components. The main idea behind ARIA is to add the necessary
semantic data into the HTML and XHTML markup. The browser
can then interpret this additional semantic data and provide it to
the assistive technology via the accessibility API of the platform.
Thus, a screen reader can identify a tree control as such. Each
tree item is indicated as well as its hierarchy within the tree and its
expanded or collapsed state.

The ARIA specification defines a standard set of roles and states
that can be added into a component. Currently versions 1.5 and
later of the open source Firefox browser implement the in-
progress ARIA specification on the Windows platform.

3.1.2 Input Focus and Keyboard Navigation
Providing the semantic information about a component is the first
step, in addition, the user must be able to navigate and interact
with that control. Input focus and keyboard navigation is essential
to allow people using assistive technologies to interact with a
component as well as to support users with mobility issues.
Assistive technologies need to track which elements on the page
have focus and provide information about that component. The
Document Object Model specification allows all elements to
receive keyboard events, however, in current browsers only form
and link elements receive input focus via the keyboard by default.
The standard HTML mechanism is for keyboard users to navigate
from focusable item to item via the tab key. With sophisticated
components this tab key navigation is cumbersome and no longer
practical. The ARIA specification defines the use of the tabindex
key to indicate which elements may receive keyboard focus. The
use of the tabindex attribute to enable focus was adapted from the
implementation in Internet Explorer and support for the tabindex
attribute has been implemented in Firefox as of version 1.5.

The tabindex attribute can be added to nearly any element. The
value of the tabindex indicates how the element can receive focus.
Elements with a tabindex of 0 are placed into the tab order of the
page and can receive keyboard focus via the tab key. Form and
link elements have intrinsic support for keyboard focus and do not
require an explicit tabindex value of 0. Elements with a positive
tabindex value are placed into the tab order before elements with
an intrinsic tabindex or with a tabindex of 0. Elements with a
tabindex value of negative one can receive focus
programmatically. This programmatic focus allows Web
developers to handle keyboard events and set focus to a specific
element. This means that, via scripting, arrow key navigation can
be implemented within components on the Web. User interface
components on the Web can be implemented to work in the same
manner as the desktop versions of these components.

Now a tree control, tab panel or other complex user interface
component on the Web can be fully identified to a screen reader
user. The component can receive initial focus via tab key
navigation from component to component on the page. The user
knows the type of control that has focus, its current state
(expanded, checked, selected, etc.) and any additional properties
such as grouping and hierarchy. The user navigates within the
component via arrow keys in a similar manner to the desktop
version of the component.

Figure 1 shows a tree control implemented within a sample Web
application. The tree displays two top level nodes, Antarctic and
Arctic. The Antarctic node has been expanded to reveal three
child nodes; Penguins, Seals, and Whales. The Penguins node has

been expanded to display five child elements, Adelie, Chinstrap,
Emperor, Gentoo, and Rockhopper. The Adelie item has focus.

Figure 1 A Web Tree Control

Because this tree node has been implemented using ARIA
techniques, the Firefox browser in Windows can communicate
full information about this control to a screen reader.

The user navigated to the first node of the tree control, Antarctic,
by pressing the tab key. When the Antarctic node received focus
the Window-Eyes screen reader spoke, “Antarctic closed one of
two tree view.” Pressing the right arrow key expanded that node
to reveal the children, “Antarctic expanded three items one of two
tree view”. Pressing down arrow put focus on the Penguin node,
“Penguins closed one of three depth two”. Pressing right arrow
expanded that node, “Penguins expanded five items”. Finally, one
additional press of the down arrow focused the Adelie node,
“Adelie one of five items depth three”.

The keyboard operation makes it easy to navigate within this
control and the ARIA implementation gives a screen reader user
complete information about the status and hierarchy of the
control. Compare this to a tree control implemented using links
where the user must tab to each node in the tree, press enter to
expand or collapse the item and receives no semantic information
about the state and hierarchy of the control.

In this sample application, when enter is pressed with focus on a
tree node, information pertaining to that node item is displayed on
the right hand side of the screen using Ajax techniques. The next
step is to inform the user of these dynamic updates to the page.

3.1.3 Dynamic Updates
One of the classic characterizations of Web 2.0 is dynamic
updates to information. Ajax technologies allow pages to be
incrementally updated. This may be in response to a user request,
such as opening a menu, checking for new mail or updating an on-
line instant chat. Web applications may also provide automatic
updates such as providing updated stock quotes, sports scores,
temperatures or other information. Via Web Services, a single
Web page may be made up of information from several different
sources. Information about these updates is not always available
to assistive technologies. The ARIA specification addresses this
via regions.

Different portions of the page can be identified with a role of
region indicating that it is a perceivable unit which is given a title.
Regions have properties which identify the type of region and
how it is updated. It may be live or atomic. Live regions have
additional semantics to identify the type of update and how the

user should be notified. Users will not be notified of updates
marked as polite until any current activity is completed. On the
other side of the spectrum are updates marked as rude which are
high priority and should interrupt any current activity. Support
for regions is being added in to Firefox 3 and will require
additional support from assistive technologies.

Through the use of scripting, semantic metadata, and input focus
paradigms, the Accessible Rich Internet Application specification
enables Web 2.0 applications and interfaces to become accessible
to all users, including those requiring assistive technologies. It is
imperative that the browser can communicate all of the necessary
information about the Web components to the assistive
technology.

3.2 Accessibility API’s
Each operating system provides a set of Accessibility application
programming interfaces to communicate information to assistive
technologies. The assistive technologies need to know the details
of components such as name, role, states, descriptions, etc, and to
respond to events and changes to components in order to
communicate with assistive technologies. Each operating system
has its own accessibility API. There is Microsoft Active
Accessibility (MSAA) and UI Automation for Windows, Linux
Accessibility Toolkit (ATK) for Linux and MAC Accessibility
API from Apple. There is even an accessibility API for Java.
Web 2.0 is introducing new concepts which can not be handled by
some of the current accessibility APIs, most notably MSAA.

The Microsoft Active Accessibility API was created many years
ago and does not contain programming interfaces to represent
some of the rich document editing and advanced features
supported in Web 2.0 applications. IBM developed an extension
to MSAA called IAccessible2 and, even though this is a Windows
technology, has donated this open standard to The Linux
Foundation [8]. IAccessble2 adds additional interfaces to MSAA
to update it with equivalent functionality to the Java and Linux
APIs. This will allow more uniform support for the Open
Document Format (ODF) for describing electronic documents.
Critical for Web 2.0 Ajax applications is that IAccessible2
provides the necessary interfaces to support ARIA live regions
and dynamic editing. In addition to providing detailed
information about the Web content and interactions, another
mechanism is to adapt information and present it based on the
abilities and preferences of the user.

3.3 Adaptation Strategies
The idea behind the Semantic Web is to provide data on the Web
in a universal format that can be interpreted by software agents.
This makes all data easily searchable and ubiquitous. A universal
format also allows the data to be presented in different formats
and modalities. [9]

Resource Descriptor Framework (RDF) is the language of the
Semantic Web. It is a mechanism to represent resources in a
manner that can be utilized by applications. RDF identifies items
via uniform resource locators and describes them via properties
and values. The RDF syntax is XML based and can be extended
to represent any type of data [10]. RDF can enable device
independence which will allow information to be presented on a
variety of devices. This is important for the Mobile Web as well
as for accessibility.

The Semantic Web Accessibility Platform (SWAP), created by
UB Access uses RDF to create a knowledge based approach to
accessibility [11]. SWAP adds accessibility notations to a Web
page which are interpreted by a proxy server to adapt the data to a
particular user.

Another project which is focused on adapting Web interfaces is
the Fluid Project from the Adaptive Technology Resource Center
at the University of Toronto [12]. It will use Web 2.0 technologies
such as scripting and Ajax to customize the user interface based
on the user’s needs. The goal is to improve the user interfaces of
academic software to address accessibility, usability and
internationalization goals.

4. Developing an Accessible Web 2.0
New technologies which address accessibility of Web 2.0 are
important but do not solve the problem until they are put into
practice. Today, nearly anyone can create a presence on the web
by using simple tools to create Web pages, blogs and wikis.
Many interface providers will supply and install the necessary
software so that little technical skill is required. Accessibility
needs to be built into these tools. The first step is to enable
toolkits with accessibility, then applications built using these
toolkits will inherit accessibility.

4.1 Toolkits
There are several open source JavaScript and Ajax toolkits
available to make creating Web 2.0 applications faster and easier.
These toolkits make Web 2.0 development easier by abstracting
browser differences and providing base functions for event
handling, Ajax interactions, data binding, graphic effects as well
as rich, customizable user interface components [13]. Examples of
such toolkits include:

• Dojo http://www.dojotoolkit.org/

• Google Web Toolkit -
http://code.google.com/webtoolkit/

• Open Rico- http://openrico.org/

• Prototype - http://www.prototypejs.org/

• TIBCO General Interface (available via an open source
license)
http://www.tibco.com/software/rich_internet_applicatio
n/default.jsp

• Yahoo User Interface Library -
http://developer.yahoo.com/yui/

• Zimbra Kabuki AJAX Toolkit
(http://www.zimbra.com/community/kabuki_ajax_tool
kit_download.html)

Others solutions such as DWR, Direct Web Roaming,
(http://getahead.org/dwr) focus on accessing Java from
JavaScript. Most of these toolkits understand that accessibility is
an important issue and are working to integrate accessibility.

The core user interface component (widget) set of the Dojo Open
Source toolkit is being updated for accessibility for the 1.0
release expected in the fall of 2007. Dojo will be one of the first
toolkits to implement ARIA techniques to provide full keyboard
and assistive technology support. General Accessibility

information, strategy, Dojo accessibility resources, and ARIA
implementation details have been documented by the author of
this paper, in the Internationalization and Accessibility Chapter of
the on-line Dojo Book [14]. Dojo plans to include
documentation for creating and using each core widget, including
accessibility considerations.

Although not an open source project, Bindows
(http://www.bindows.com/) is a framework for Ajax applications
developed with accessibility in mind. While it doesn’t have some
of the richly styled user interface components of other toolkits, it
claims compliance for US. Government Section 508 requirements
in Internet Explorer on the Windows platform.

4.2 Integrated Development Environments
In addition to toolkits, Integrated Development Environments
(IDE) can make the creation of Web 2.0 applications easier and
faster. Many even include rich user interface components with
accessibility built in. IBM’s Rational Web Developer is one
example that includes a library of rich user interface elements
which meet accessibility requirements. Microsoft’s ASP.NET
AJAX is a free framework for developing Web 2.0 applications
that integrates with the Microsoft Visual Studio development
environment. The Ajax Tooling Framework
(http://www.eclipse.org/atf/) is an Eclipse plug-in to make
development of Web 2.0 applications easier and in integrates with
some of the open source toolkits mentioned previously. Tools for
building accessible Web 2.0 applications are improving but
testing these dynamic applications for accessibility requires
advanced testing tools.

5. Testing an Accessible Web 2.0
Many testing tools exist to test the accessibility of the Web.
These tools will evaluate the HTML of a Web site against a
specific set of guidelines such as WCAG 1.0 or the US
Government Section 508 requirements. They provide a report of
the accessibility errors found which must be manually addressed
by the developers. These tools are often criticized for providing
too much information about some errors and can miss other
errors. For example a tool can determine if alternative text is
provided for an HTML img element by testing for the existence of
an alt attribute. However, the tool can not ascertain if that
alternative text is appropriate. Only the developer can know if an
empty alt attribute was provided because an image is decorative
only, or if it was just inserted because the development tool,
trying to assist with accessibility, required at least some entry for
the alt attribute when the img element was created.

Since most tools evaluate the resulting HTML pages, as more
dynamic server side Web development technologies such as
Active Server Pages (ASP), JavaServer Pages (JSP), Ruby on
Rails, and PHP Hypertext Preprocessor are used, it is difficult for
a tool to determine the exact source of the error. Add Web 2.0
dynamic updates into the mix and the testing strategy gets much
more difficult. New tools are needed to address Web 2.0
applications.

5.1 Rule-based Accessibility Validation
Environment (RAVEN)
Rule-base Accessibility Validation Environment (RAVEN) was
introduced by IBM as a set of Eclipse plug-ins for verifying the

accessibility of Java graphical user interface applications [15].
RAVEN relies on Aspect Oriented programming techniques to
provide a non-invasive automatic to semi-automatic means to
evaluate accessibility. It is based on an architecturally neutral
validation engine which operates via an XML based set of rules. It
integrates accessibility testing into the development environment
but can also be used to test completed applications.

Due to the use of a pluggable architectural model, RAVEN can
support other graphical frameworks in addition to Java based
ones. RAVEN has been updated to support dynamic HTML which
allows it to be used for testing Web applications. The integration
of RAVEN into the Eclipse platform allows the evaluation of
dynamic Web applications as they are being developed, and tested
within the development environment. In addition, there are further
plans to support the ARIA specification – enabling testing
capabilities of Web 2.0 applications which utilize ARIA
techniques [16].

5.2 Functional Web Accessibility Techniques
and Tools
The University of Illinois has developed a set of Web
Accessibility Best Practices as well as a Functional Web
Accessibility Evaluator (FAE) Tool to test a Web sites use of the
Best Practices [17]. The Accessibility Best Practices are based on
a set of five principles, Navigation and Orientation, Text
Equivalents, Scripting and Automation, Styling, and Standards
Coding techniques are provided to implement these principles.
Unlike traditional tools which search for specific tags and
attributes, such as img tags with no alt attribute, the FAE tool
evaluates based on the coding techniques recommended in the
Best Practices - essentially applying the Best Practices coding
examples as rules for the evaluator.

The University has also developed a Mozilla/Firefox Accessibility
Extension which provides visual feedback about the accessibility
features of a Web resource and can also be used with the FAE.
Using the Accessibility Extension a developer, tester, or user can
turn on and off different features used on the Web site such as
images or Cascading Style Sheets (CSS). In addition, information
about different structural features such as headers, alternative text,
and labels can be visually highlighted or displayed in dialog
boxes. This is accomplished by querying the Document Object
Model (DOM), allowing for the dynamic testing of Web
applications. In addition, the Mozilla/Firefox Accessibility
Extension queries and displays information about the correct
implementation and use of ARIA techniques. Having
development and testing tools for ARIA is one of the key steps in
encouraging the adoption of this specification and enabling an
accessible Web 2.0.

6. SUMMARY
The dynamic nature of Web 2.0 is creating challenges for
accessibility. Users of assistive technologies may be unaware of
the behavior and operation of dynamically created user interface
controls so prevalent in Web 2.0. Ajax based applications which
dynamically update portions of the page create additional
difficulties. In order to make Web 2.0 accessible to all users,

more semantic information and behaviors need to be embedded
into Web applications and provided to assistive technologies.
The ARIA specification provides a mechanism to add the
additional semantics and notifications. Future use of RDF and
adaptation strategies will further enable accessibility, unified
searches and usability. Enhancements to accessibility APIs, and
their adoption by browsers and assistive technologies will allow
these new Web 2.0 paradigms to be exposed to all users. The
integration of accessibility technologies into development
environments, toolkits and testing tools can make creating
accessible Web 2.0 applications the norm.

7. REFERENCES
[1] Chisholm, W., Vanderheiden, G. and Jacobs, I (1999) Web

Content Accessibility Guidelines 1.0,
http://www.w3.org/TR/WCAG10/

[2] O’Reilly, Tim, (2005)
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09
/30/what-is-web-20.html

[3] Security Space Technology Penetration reports,
http://www.securityspace.com/s_survey/data/man.200103/
techpen.html and
http://www.securityspace.com/s_survey/data/man.200703/
techpen.html.

[4] Regan, Bob, (2005) Macromedia White Paper, Best
Practices for Accessible Flash Design,
http://www.adobe.com/resources/accessibility/best_practic
es/best_practices_acc_flash.pdf

[5] Howe, Jeff, The Rise of Crowdsourcing. Wired Magazine,
Issue 14.06, June 2006.

[6] Brewer, Judy, (2005) How People with Disabilities Use
the Web, http://www.w3.org/WAI/EO/Drafts/PWD-Use-
Web/20050505

[7] Gunderson, J, Schwerdtfeger, R. (2006) Roadmap for
Accessible Rich Internet Applications (WAI-ARIA
Roadmap), http://www.w3.org/TR/aria-roadmap/

[8] The Linux Foundation, The Free Standards Group to
Standardize New Accessibility Interfaces, Press Release,
December 14, 2006, http://www.linux-
foundation.org/wordpress/?p=276

[9] Berners-Lee, T. Hendler, J., Lassila, O. The Semantic
Web, Scientific American, May 2001.

[10] Manola, F.,Miller E. (2004) RDF Primer,
http://www.w3.org/TR/rdf-primer/

[11] Seeman, L. The Semantic Web, Web Accesibility, and
Device Independence. ACM SIGCAPH Newsletter, No.
76, June 2003.

[12] Smith, B. University of Toronto leads project for adaptive
Web applications, Canadian Technology News, April 12,
2007
http://www.itbusiness.ca/it/client/en/home/News.asp?id=4
3009 and http://www.fluidproject.org/

[13] Wayne, P. Surveying open-source AJAX toolkits,
InfoWorld, July 2006,
http://www.infoworld.com/article/06/07/31/31FEajax_1.ht
ml

[14] The Dojo Book, Chapter 8: Intenationalization and
Accessibility, http://www.dojotoolkit.org/docs/book/part8

[15] Feigenbaum, B., Squillace, M., (2006) Accessibility
Validation with RAVEN. In Proceedings of the 2006
international workshop on Software Quality, ACM Press
(pp 27-32).

[16] Squillace, M. IBM Rule-based Accessibility Validation
Environment, presentation at California State Universiry
at Northridge (CSUN) Technology & Persons with
Disabilities Conference, March, 2007, Los Angeles, CA

[17] Gunderson. J., Rangin, H. D., Hoyt, N. (2006), Functional
Web Accessibility Techniques and Tools from the
University of Illinois. In Proceedings of the 8th
International ACM SIGACCESS Conference on
Computers and Accessibility ASSETS 06, ACM Press (pp
269-270).

