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1. Introduction 

l 1.1 The Browser  
l 1.2 Some Formats  
l 1.3 Plug-ins  
l 1.4 Compression  

1.1 The Browser 
In the HTTP Primer, it was pointed out that most Web pages do not consist of a single file but often contain 
embedded images and other graphics which are not defined in HTML but in their own format. The browser 
may know how to deal with such formats or it may not. In the case that it does not, it can be enhanced with a 
plug-in that can handle the format or it may even call a helper application to deal with it for the browser. 
Thus there are three main options although the first and second appear quite similar to the user. If the 
browser supports the format or a plug-in has been added to enhance its ability, the image or whatever it is 
will appear as part of the browser window. If a helper application is called, it is likely that the image, video or 
whatever will appear in a separate window possibly with a quite different set of controls. Plug-ins, if they have 
their own menu options will either enhance the browser's controls or have a separate menu that pops up on a 
right button depression. Figure 1.1 shows a page that has been downloaded with an embedded Scalable 
Vector Graphics (SVG) drawing of a duck and a small Graphics Interchange Format (GIF) European 
Union Flag. If a Moving Pictures Experts Group (MPEG) video with an audio track was also to be played, it 
might call a Real Player helper application to display the video in a separate window. 

 
Figure 1.1: Plug Ins and Helper Applications 
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1.2 Some Formats 
In this Primer, we will look at the following formats: 

l WBMP, Wireless BitMaP Format: this simple image format is used in the context of WAP and mobile 
phones  

l GIF, Graphics Interchange Format: the original graphics image format used on the Web  
l JPEG, Joint Photographic Experts Group: the prefered image format for real world images, 

photographs etc  
l PNG, Portable Network Graphics: the replacement image format for GIF  
l CGM, Computer Graphics Metafile: the main vector drawing format before SVG (SVG will be covered 

in detail in a separate Primer)  

We will also touch on some other formats. The aim is not to give a tutorial on image formats but more to 
indicate what should be used when and some of the important distinctions between the various formats. 

1.3 Plug-ins 
To give an idea of what a modern browser supports, IE5.5 currently supports GIF, PNG and JPEG itself. 
SVG, Adobe Acrobat, Macromedia Shockwave, Flash and CGM are supported by plug-ins. WBMP is not 
supported although it is supported by most of the browsers and simulators for mobile phones. 
To add an image to an HTML page requires: 

<object width="600" height="400" data="fig1p1.svg" type="image/svg+xml"> 
<img src=-"fig1p1.png" width="600" height="400" /> 
</object> 

The object element gives the MIME type of the document requested. MIME (Multipurpose Internet Mail 
Extensions) media types define data types on the Internet. They consist of a major type (such as application, 
image, or text) followed by a minor type. By looking at the MIME type, the browser can make a decision what 
to do. If it supports the MIME type, it can download the file and process it. If it does not support it directly, it 
can see if it has been enhanced by a plug-in or helper to support that MIME type. The browser loads the 
appropriate plug-in into memory, creates a new instance of it, initializes it, and hands the data over to the 
plug-in. If there is no plug-in available, it can look at the second alternative which is to download a PNG 
equivalent. If the list is long enough, it will eventually find a format that can be handled. 
In the case of the img element, no information about the file is known other than its file extension. Normally 
this can be used to deduce the type of the image. 
The browser allows the plug-in to:  

l Register one or more MIME types as objects that it can handle  
l Draw into the browser's window at a point specified  
l Receive keyboard and mouse events>These are passed on by the browser  
l Receive information from the network via URLs. Thus the plug-in can nearly work autonomously if it 

downloads objects of the same type  

When downloading a file from a Web server, the browser also receives the MIME type as part of the HTTP 
file. This can also be used to choose the plug-in but you have had to download the file to do it this way. 
When an img element refers to a local file, there is no MIME type information available, so the browser has to 
fall back on the file extensions that plug-ins have been registered for.  
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1.4 Compression 
A good quality image, even a small one, can take up a lot of space. For example, a 400 by 400 pixel image 
which might cover a quarter of your display screen if you have an old low resolution display can be over 1 
Mbyte in size if it has a reasonable colour range and is transparent in places. This creates several problems: 

l It takes up a lot of space both on the server, proxies and caches and the browser  
l The time to download may be of the order of 10 minutes  
l HTTP is not really designed for files that size  

In consequence, there is a need to compress the file. Unless the image is completely random, there will be 
areas where the information does not change rapidly or the image can be varied as subtle changes in the 
image may not be visible to the human eye. In consequence, much of the discussion will be around file size, 
speed of compression and decompression, intermediate storage required, etc. 
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2. WBMP 

l 2.1 Introduction  
l 2.2 Layout  
l 2.3 Comments  

2.1 Introduction 
One of the organizations that is bringing the Web to mobile phones is the Wireless Application Protocol 
(WAP) Consortium. The current mobile phones have limits in performance, memory and bandwidth. In 
consequence, if images are to be added to Web pages on mobile phones then an efficient protocol is 
needed. Here efficiency means not just that the number of bits transmitted is low but also that the processing 
of the information is low and that the memory requirements are low. To some extent, the bandwidth is less of 
a problem than the other two. None of the protocols in use were aiming at such constraints. Consequently, 
the WAP Consortium defined a new protocol called Wireless BitMap (WBMP) with a media type image/x-wap 
and a file extension of .wbmp. 

2.2 Layout 
The WBMP protocol is extremely simple. The first four bytes of a file are something like: 

00000000 
00000000 
01100000 
01000001 

The first 8 bits define the type of WBMP. Only one type is currently available and that is Type 0. This states 
the following: 

l There is no compression technique employed  
l The picture is black and white with a 1 bit indicating white and a 0 bit indicating black.  
l The high order bit of each byte is the left-most bit of the byte  
l The first row of the image is the top row in the image  

The second byte (also all 0's) states that this is the last field of the header and that no extension headers 
follows. 
The third byte has the binary value of 96 in the example, which is the number of pixels in each row. The 
fourth byte has the binary value of 65 that indicates that there are 65 rows in the image. 
The image data follows immediately after the width and height. In the case above that means that the next 12 
bytes define the first row of the image and so on. If the row was not an exact number of bytes in length, say it 
had been 94, then the last few bits in the byte are not used and are set to 0. Thus each row starts on a byte 
boundary. The 4-byte header above would therefore be followed by 780 bytes (96 times 65 bits) defining the 
image. Something like: 
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111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
111111111111111111111111111111111111111100000000000000001111111111111111111111111111111111111111 
111111111111111111111111111111111111100000000000000000000001111111111111111111111111111111111111 
111111111111111111111111111111111110000000000000000000000000011111111111111111111111111111111111 
111111111111111111111111111111111000000000000000000000000000000111111111111111111111111111111111 
111111111111111111111111111111100000000000000000000000000000000001111111111111111111111111111111 
111111111111111111111111111111000000000000000000000000000000000000111111111111111111111111111111 
111111111111111111111111111100000000000000000000000000000000000000011111111111111111111111111111 
111111111111111111111111111000000000000000000000000000000000000000000111111111111111111111111111 
111111111111111111111111110000000000000000000000000000000000000000000111111111111111111111111111 
111111111111111111111111100000000000000000000000000000000000000000000001111111111111111111111111 
111111111111111111111111000000000000000000000000000000000000000000000001111111111111111111111111 
111111111111111111111111000000000000000000000000000000000000000000000000111111111111111111111111 
111111111111111111111110000000000000000000000000000000000000000000000000011111111111111111111111 
111111111111111111111100000000000000000000000000000000000000000000000000001111111111111111111111 
111111111111111111111100000000000000000000000000000000000000000000000000001111111111111111111111 
111111111111111111111000000000000000000000000000000000000000000000000000000111111111111111111111 
111111111111111111111000000000000000000000000000000000000000000000000000000111111111111111111111 
111111111111111111110000000000000000000000000000000000000000000000000000000011111111111111111111 
111111111111111111110000000000000000000000000000000000000000000000000000000011111111111111111111 
111111111111111111100000000000000000000000000000000000000000000000000000000001111111111111111111 
111111111111111111100000000000000000000000000000000000000000000000000000000001111111111111111111 
111111111111111111100000000000000000000000000000000000000000000000000000000001111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000011111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111000000000000000000000000000000000000000000000000000000000000111111111111111111 
111111111111111111100000000000000000000000000000000000000000000000000000000001111111111111111111 
111111111111111111100000000000000000000000000000000000000000000000000000000001111111111111111111 
111111111111111111100000000000000000000000000000000000000000000000000000000001111111111111111111 
111111111111111111110000000000000000000000000000000000000000000000000000000011111111111111111111 
111111111111111111110000000000000000000000000000000000000000000000000000000011111111111111111111 
111111111111111111111000000000000000000000000000000000000000000000000000000111111111111111111111 
111111111111111111111000000000000000000000000000000000000000000000000000000111111111111111111111 
111111111111111111111100000000000000000000000000000000000000000000000000001111111111111111111111 
111111111111111111111100000000000000000000000000000000000000000000000000001111111111111111111111 
111111111111111111111110000000000000000000000000000000000000000000000000011111111111111111111111 
111111111111111111111111000000000000000000000000000000000000000000000000111111111111111111111111 
111111111111111111111111000000000000000000000000000000000000000000000001111111111111111111111111 
111111111111111111111111100000000000000000000000000000000000000000000001111111111111111111111111 
111111111111111111111111110000000000000000000000000000000000000000000111111111111111111111111111 
111111111111111111111111111000000000000000000000000000000000000000000111111111111111111111111111 
111111111111111111111111111100000000000000000000000000000000000000011111111111111111111111111111 
111111111111111111111111111111000000000000000000000000000000000000111111111111111111111111111111 
111111111111111111111111111111100000000000000000000000000000000001111111111111111111111111111111 
111111111111111111111111111111111000000000000000000000000000000111111111111111111111111111111111 
111111111111111111111111111111111110000000000000000000000000011111111111111111111111111111111111 
111111111111111111111111111111111111100000000000000000000001111111111111111111111111111111111111 
111111111111111111111111111111111111111100000000000000001111111111111111111111111111111111111111 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

It is not too difficult to work out that the image is of a black circle on a white background. 
This particular image is also displayed in Figure 2.1. 

 
Figure 2.1: A WBMP Picture 

2.3 Comments 
The image actually displayed in Figure 2.1 is in the Graphics Interchange Format (GIF) as WBMP is mainly 
aimed at the mobile phone market and is not supported by either IE or Adobe products. The WBMP file is 
784 bytes long and the GIF file is 242 bytes. We will look at GIF shortly and see how it manages to do this. 
The main comment for now is that this format is so simple that the bits as they are received can be displayed 
immediately. The mobile phone will have a set of bits that represent the display's screen and the image can 
be downloaded straight into the image. No offscreen storage is needed at all. The program is very short also. 
The first few bytes determine the number of bytes defining each row and the only real problem is making 
sure that the few bits left over at the end of a row do not corrupt the display. 
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In fact this image is quite a large image for a mobile phone and if we decreased the size we would eventually 
come to a position where the WBMP image is actually smaller than the equivalent GIF image. This is 
because the compression achieved by GIF becomes less effective and the GIF Header becomes more 
dominant in term of storage requirements. 

 
Figure 2.2: Another WBMP Picture 

Figure 2.1 shows a slightly larger image that is 161 by 119 pixels and in this case the WBMP file is 2504 
bytes compared with (a rather inefficiently defined) GIF of 1377 bytes. 
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3. Compression 

l 3.1 Introduction  
l 3.2 Run Length Encoding  
l 3.3 Code Tables  
l 3.4 Lempel and Ziv  
l 3.5 LZW  

3.1 Introduction 
The aim of data compression is to reduce the number of bytes that need to be transmitted. This is even more 
important with images than with HTML pages just due to their large size. We may be talking Megabytes 
rather than Kilobytes and if we move to audio or video we can be talking Gigabytes. The main aim is to 
achieve a high compression ratio at low cost. Compression ratio is the number of bytes in the original 
image compared with the number of bytes transmitted. Compression ratios of at least 10:1 are what we are 
looking for. 
To achieve this, it is clearly a lot easier if we throw information away. If the image we transmit looks the 
same as the original image that may be sufficient. This is called lossy compression. If we insist that the 
image reconstructed after transmission is identical to the one we start with then that is called lossless 
compression which is clearly more difficult in terms of achieving a high compression ratio. 
An encoder prepares the information for transmission and a decoder after transmission recreates the 
original image. In the case of WBMP, both are very trivial pieces of software. We may choose to make one or 
other more complex. For example, if you only plan to compress the image once but have it decompressed 
many times, having the encoder quite complex in order to make the decoder simpler would be an advantage. 
There is also the user's perceived view of the process. If the user can see part of the image before the 
remainder has been transmitted, a decision can be made as to whether it is required or not. A major way of 
doing this is to break the image into passes and not transmit the image from top to bottom but instead 
deliver, say, every 8th row, followed by every 4th row then every second and so on. This is called interlacing 
and is the standard way of transmitting television pictures. Every other row is transmitted first followed by the 
other rows. 
To first order there are three approaches that can be taken: 

1. Transform the data to make it smaller. A long series of 1s and 0s in the WBMP image may be 
transformed to some other representation.  

2. Reduce the precision. If colour values are 16 bits each for red, green and blue for each pixel and the 
image is to be displayed on a system only capable of displaying 8 bits of precision, it is not sensible to 
transmit all 16 bits.  

3. Change the representation of the data. The more common data items, say the primary colours, might 
be stored using less bits than the less common colours.  

Most compression techniques try and use all three to achieve the compression ratio required. 

3.2 Run Length Encoding 
Let us start by looking at a fairly simple approach, run length encoding. The simplest case is to take 
multiple values that are the same and replace them by the value and a count of how many times it occurs. In 
the WBMP example in Figure 1.1, we need to make some decisions as to how to encode the information. We 
could, for example, choose to have individual bytes containing: 

BAAAAAAA  

The first bit B represents the colour. If B is set to 1 then it is white and if set to 0 it is black. The rest of the 
byte indicates the number of bits in the row starting from the left that have that value. The result for the 
WBMP image would be: 
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224 
224 
168 16 168 165 22 165 163 26 163 161 30 161 
159 34 159 158 36 158 156 39 157 155 42 155 
154 43 155 153 46 153 152 47 153 152 48 152 
151 50 151 150 52 150 150 52 150 149 54 149 
149 54 149 148 56 148 148 56 148 147 58 147 
147 58 147 147 58 147 146 60 146 146 60 146 
146 60 146 146 60 146 146 60 146 146 60 146 
146 60 146 146 60 146 146 61 145 146 60 146 
146 60 146 146 60 146 146 60 146 146 60 146 
146 60 146 146 60 146 147 58 147 147 58 147 
147 58 147 148 56 148 148 56 148 149 54 149 
149 54 149 150 52 150 150 52 150 151 50 151 
152 48 152 152 47 153 153 46 153 154 43 155 
155 42 155 156 39 157 158 36 158 159 34 159 
161 30 161 163 26 163 165 22 165 168 16 168 
224 
224 
224 

The first two and last three rows are defined using a single byte and the intervening rows each take three 
bytes making 185 bytes compared with the 780 bytes that we started with, a compression ratio of just over 4. 
We could try looking for larger patterns and have a byte in front of the pattern giving in the top half the 
number of bytes to repeat and the bottom half giving the number of times. This would result in: 

18 224 
193 
168 16 168 165 22 165 163 26 163 161 30 161 
193 
159 34 159 158 36 158 156 39 157 155 42 155 
193 
154 43 155 153 46 153 152 47 153 152 48 152 
49 
151 50 151 
50 
150 52 150 
50 
149 54 149 
50 
148 56 148 
51 
147 58 147 
56 
146 60 146 
49 
146 61 145 
54 
146 60 146 
51 
147 58 147 
50 
148 56 148 
50 
149 54 149 
50 
150 52 150 
49 
151 50 151 
193 
152 48 152 152 47 153 153 46 153 154 43 155 
193 
155 42 155 156 39 157 158 36 158 159 34 159 
193 
161 30 161 163 26 163 165 22 165 168 16 168 
19 224 

The first item repeats the 224 byte twice. The 193 byte (16 * 12 +1) repeats the next 12 bytes once. The 
savings come when we have the 56 byte indicating that the next 3 bytes should be repeated 8 times. In all 
the size is now 134 bytes, a compression ratio approaching 6. The question will soon come as to whether we 
are employing compression techniques that only work for circles. Clearly the compression is good for any 
large black object and if it is regular that will improve the compression. However, the compression for Figure 
5.2 would not be as good. On the other hand it would not be bad also. 
Run length encoding is used by a number of data encodings including CCiTT Fax, TARGA, TIFF (Tag Image 
File Format often used for output to printers and input from scanners) and RLE. It is usually difficult to get a 
compression ratio greater than 5 with just run length encoding and so has limited appeal. 
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3.3 Code Tables 
We can build on the idea of finding patterns introduced in the previous section. As early as the 1950s, 
compilers and text retrieval systems were building large tables of commonly used expressions or words and 
then replacing the textual information by the index into the table. For example, paraphrased from The House 
at Pooh Corner by A. A. Milne: 

So after breakfast they went round to see Piglet and Pooh explained 
as they went that Piglet was a very small animal who did not like bouncing 
and asked Tigger not to be too bouncy just at first. And Tigger who had 
been hiding behind trees said that a Tigger was only bouncy before 
breakfast 
and that as soon as they had had breakfast they became quiet and refined. 

We could make up a table (ignoring capitals for the moment) containing all the words as follows: 

The text could now be written as: 

33 02 15 36 43 29 38 31 25 03 26 17 
05 36 43 35 25 42 01 41 32 04 44 16 23 22 13 
03 06 37 23 38 08 39 14 21 07 18 03 37 44 19 
10 20 12 40 30 35 01 37 42 24 14 11 15 
03 35 05 34 05 36 19 19 15 36 09 27 03 28 

The original text is about 366 bytes long and the index values could be stored two per byte and only requires 
35 bytes. 
Unfortunately, the receiver does not know what the codes mean unless we also send the table and that 
requires at least 240 bytes so the saving is not that great if we have also to send the table giving what the 
codes mean. There are some compactions that you can do on the table but we are not going to get a high 
compression ratio as it stands unless the word reuse is high and we send a significantly large body of text 
that multiple occurrences of words appear very frequently. 

3.4 Lempel and Ziv 
Using codes for symbols is the basis of the algorithm invented by Lempel and Ziv in 1977. You can start with 
an empty Code Table but it is more usual to put the set of alphabetic symbols and space in the Code Table 
initially. As symbols (characters) are read, the following algorithm is executed: 

01 a 12 behind 23 not 34 soon

02 after 13 bouncing 24 only 35 that

03 and 14 bouncy 25 piglet 36 they

04 animal 15 breakfast 26 pooh 37 tigger

05 as 16 did 27 quiet 38 to

06 asked 17 explained 28 refined 39 too

07 at 18 first 29 round 40 trees

08 be 19 had 30 said 41 very

09 became 20 hiding 31 see 42 was

10 been 21 just 32 small 43 went

11 before 22 like 33 so 44 who
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prefix= emptystring; 
 
repeat 
  get nextcharacter; 
  if prefix + nextcharacter is in the Code Table then prefix = prefix + 
nextcharacter 
  else { 
      add prefix + nextcharacter to the Code Table; 
      output the code of the prefix from the Code Table 
      set the prefix to the nextcharacter       } 
until complete; 
output the code of the last prefix 

The Code Table produced is: 

0 _ 35 _b 70 et 105 ery 140 d_t 175 bee 210 re_

1 a 36 br 71 t_a 106 y_s 141 ti 176 en_ 211 _br

2 b 37 re 72 an 107 sm 142 igg 177 _h 212 rea

3 c 38 ea 73 nd_ 108 ma 143 ge 178 hi 213 akf

4 d 39 ak 74 _po 109 al 144 er_ 179 idi 214 fas

5 e 40 kf 75 oo 110 ll 145 _n 180 ing_ 215 st_an

6 f 41 fa 76 oh 111 l_ 146 not 181 _be 216 nd_th

7 g 42 as 77 h_ 112 _an 147 t_t 182 eh 217 hat_

8 h 43 st 78 _e 113 ni 148 to 183 hin 218 _as

9 i 44 t_ 79 ex 114 im 149 o_b 184 nd_t 219 s_s

10 j 45 _t 80 xp 115 mal 150 be 185 tr 220 soo

11 k 46 th 81 pl 116 l_w 151 e_t 186 ree 221 on_

12 l 47 he 82 la 117 wh 152 too 187 es 222 _as_

13 m 48 ey 83 ai 118 ho 153 o_bo 188 s_ 223 _the

14 n 49 y_ 84 in 119 o_d 154 ounc 189 _s 224 ey_

15 o 50 _w 85 ne 120 di 155 cy 190 sa 225 _ha

16 p 51 we 86 ed 121 id 156 y_j 191 aid 226 ad_

17 q 52 en 87 d_a 122 d_n 157 ju 192 d_th 227 _had

18 r 53 nt 88 as_ 123 no 158 us 193 hat 228 d_br

19 s 54 t_r 89 _th 124 ot 159 st_ 194 t_a_ 229 reak

20 t 55 ro 90 hey 125 t_l 160 _at 195 _ti 230 kfa

21 u 56 ou 91 y_w 126 li 161 t_f 196 igger 231 ast

22 v 57 un 92 wen 127 ik 162 fi 197 r_w 232 t_th

23 w 58 nd 93 nt_ 128 ke 163 ir 198 wa 233 hey_

24 x 59 d_ 94 _tha 129 e_b 164 rs 199 as_o 234 _bec

25 y 60 _to 95 at 130 bo 165 st_a 200 on 235 ca

26 z 61 o_s 96 t_p 131 oun 166 and 201 nl 236 am

27 so 62 se 97 pig 132 nc 167 d_ti 202 ly 237 me

28 o_ 63 ee 98 gle 133 ci 168 igge 203 y_b 238 e_q

29 _a 64 e_ 99 et_ 134 ing 169 er_w 204 bou 239 qu

30 af 65 _p 100 _wa 135 g_ 170 who 205 unc 240 ui

31 ft 66 pi 101 as_a 136 _and 171 o_h 206 cy_ 241 ie

32 te 67 ig 102 a_ 137 d_as 172 ha 207 _bef 242 et_a

33 er 68 gl 103 _v 138 sk 173 ad 208 fo 243 and_

34 r_ 69 le 104 ve 139 ked 174 d_b 209 or 244 _r
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The output would be: 

One thing that is obvious immediately is that it takes a while to build up entries in the Code Table that are 
able to cut the number of bytes transmitted. On the face of it we are worse off than before as we have to 
transmit 220 code values (not much of a compression considering we started with 366 characters and we 
have a Code Table with 247 entries. But there is some good news: 

l The maximum number we have to send is 221 so all the output numbers fit into a byte.  
l The first 100 numbers are all less than 63 so could fit into 6 bits each.  
l As we build up the transmitted information, we have enough information to construct the Code Table 

that comes after the basic symbols so the whole table does not need to be transmitted (just the first 27 
entries).  

0 19 35 19 70 66 105 14 140 140 175 12 210 13

1 15 36 5 71 68 106 3 141 142 176 49 211 64

2 0 37 5 72 70 107 84 142 144 177 130 212 17

3 1 38 0 73 50 108 7 143 117 178 57 213 21

4 6 39 16 74 88 109 112 144 28 179 155 214 9

5 20 40 9 75 1 110 87 145 8 180 181 215 99

6 5 41 7 76 0 111 19 146 1 181 6 216 166

7 18 42 12 77 22 112 128 147 59 182 15 217 0

8 0 43 5 78 33 113 59 148 150 183 37 218 37

9 2 44 44 79 49 114 20 149 52 184 35 219 162

10 18 45 1 80 19 115 67 150 0 185 37 220 85

11 5 46 58 81 13 116 7 151 8 186 39 221 4

12 1 47 65 82 1 117 33 152 121 187 41 222  

13 11 48 15 83 12 118 0 153 134 188 165 223  

14 6 49 15 84 12 119 123 154 35 189 184 224  

15 1 50 8 85 29 120 44 155 5 190 193 225  

16 19 51 0 86 14 121 20 156 178 191 29 226  

17 20 52 5 87 9 122 28 157 73 192 188 227  

18 0 53 24 88 108 123 2 158 20 193 27 228  

19 20 54 16 89 111 124 64 159 37 194 200 229  

20 8 55 12 90 23 125 148 160 5 195 218 230  

21 5 56 1 91 8 126 149 161 19 196 89 231  

22 25 57 9 92 28 127 131 162 0 197 48 232  

23 0 58 14 93 4 128 3 163 19 198 177 233  

24 23 59 5 94 9 129 49 164 83 199 173 234  

25 5 60 59 95 59 130 10 165 140 200 225 235  

26 14 61 42 96 14 131 21 166 172 201 174 236  

27 44 62 45 97 15 132 43 167 71 202 212 237  

28 18 63 47 98 44 133 29 168 45 203 40 238  

29 15 64 49 99 12 134 44 169 168 204 42 239  

30 21 65 51 100 9 135 6 170 34 205 147 240  

31 14 66 53 101 11 136 9 171 23 206 90 241  

32 4 67 89 102 64 137 18 172 88 207 181 242  

33 45 68 1 103 2 138 159 173 15 208 3 243  

34 28 69 44 104 56 139 72 174 14 209 1 244 -1
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The last point is the major advantage of the set of Lempel and Ziv algorithms, They spent a number of years 
refining the basic algorithm described so far. 
The decoder will look something like: 

initialize the Code Table with entries 0 to 26 
set Code to the first input value; look up in Code Table and output 
 
repeat 
OldCode=Code; 
Code=next input value; 
if in Code Table 
then { 
  look up in Code Table and output 
  Prefix=OldCode entry; 
  Suffix=First Value from the Code Table entry; 
  } 
else { 
  Prefix=OldCode entry; 
  Suffix=First Value from the Prefix; 
  Output Prefix and Suffix;   } 
add Prefix+Suffix as an entry in the Code Table; until complete; 

What happens if we try to compress the circle shown in Figure 2.1? We can start with a Code Table just 
containing two entries 0 and 1 and attempt to compress the circle. The resulting Code Table is 235 entries 
long which are all pretty boring so we have just shown the first 105: 
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0 0 35 00000000 70 0001

1 1 36 000000000 71 11111111111111111111111111111111111

2 11 37 011 72 11111111111111111110

3 111 38 11111111111111111111111111 73 0000000000000000000000

4 1111 39 111111111111111111111111111 74 00000000000000000000001

5 11111 40 111111111111111111110 75 111111111111111111111111111111111111

6 111111 41 0000000000 76 111111111111111110

7 1111111 42 00000000000 77 00000000000000000000000

8 11111111 43 00000001 78 000000000000000000000000

9 111111111 44 1111111111111111111111111111 79 0111

10 1111111111 45 11111111111111111111111111111 80 1111111111111111111111111111111111111

11 11111111111 46 11111111111110 81 111111111110

12 111111111111 47 000000000000 82 0000000000000000000000000

13 1111111111111 48 0000000000000 83 000000000000000000000001

14 11111111111111 49 000000011 84 11111111111111111111111111111111111111

15 111111111111111 50 111111111111111111111111111111 85 1111111111110

16 1111111111111111 51 1111111111111111111111111111111 86 00000000000000000000000000

17 11111111111111111 52 11110 87 0000000000000000000000011

18 111111111111111111 53 00000000000000 88 111111111111111111111111111111111111111

19 1111111111111111111 54 000000000000000 89 1111111100

20 11111111111111111111 55 0000000111 90 000000000000000000000000000

21 111111111111111111111 56 11111111111111111111111111111111 91 00000000000000000000000111

22 1111111111111111111111 57 11111111111111111111111111110 92 1111111111111111111111111111111111111111

23 10 58 0000000000000000 93 111100

24 00 59 00000000000000000 94 0000000000000000000000000000

25 000 60 000001 95 0000000000000000000000001

26 0000 61 111111111111111111111111111111111 96 11111111111111111111111111111111111111111

27 00000 62 111111111111111111111111110 97 1111000

28 000000 63 000000000000000000 98 00000000000000000000000000000

29 01 64 0000000000000000000 99 000000000000000000000011

30 11111111111111111111111 65 00001 100 111111111111111111111111111111111111111111

31 111111111111111111111111 66 1111111111111111111111111111111111 101 100

32 1111111111111111111111111 67 111111111111111111111110 102 000000000000000000000000000000

33 111111110 68 00000000000000000000 103 00000000000000000000000011

34 0000000 69 000000000000000000000 104 111111111111111111111111111111111111111110
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The compressed circle is: 

The compressed output values each fit into a byte so it will compress the circle down to under 240 bytes. 
This is not as good as the run length encoding but it will handle a greater range of images with a similar level 
of compression. 

0 1 35 29 70 19 105 88 140 54 175 174 210 126

1 2 36 32 71 69 106 105 141 134 176 79 211 210

2 3 37 38 72 73 107 82 142 141 177 158 212 9

3 4 38 20 73 71 108 92 143 142 178 162 213 120

4 5 39 36 74 17 109 108 144 137 179 110 214 213

5 6 40 41 75 73 110 106 145 144 180 177 215 10

6 7 41 34 76 77 111 75 146 58 181 104 216 114

7 8 42 39 77 37 112 111 147 146 182 171 217 216

8 9 43 44 78 75 113 109 148 147 183 100 218 85

9 10 44 13 79 11 114 80 149 48 184 174 219 98

10 11 45 42 80 78 115 114 150 143 185 100 220 219

11 12 46 47 81 77 116 112 151 150 186 101 221 15

12 13 47 43 82 80 117 66 152 42 187 180 222 86

13 14 48 45 83 12 118 117 153 152 188 187 223 222

14 15 49 50 84 82 119 91 154 153 189 168 224 18

15 16 50 4 85 83 120 119 155 36 190 187 225 130

16 17 51 48 86 84 121 120 156 155 191 2 226 225

17 18 52 53 87 33 122 121 157 156 192 189 227 72

18 19 53 49 88 86 123 56 158 55 193 192 228 145

19 20 54 51 89 87 124 123 159 61 194 188 229 228

20 21 55 44 90 88 125 124 160 159 195 147 230 231

21 1 56 54 91 52 126 51 161 154 196 195 231 232

22 0 57 58 92 90 127 126 162 149 197 3 232 233

23 24 58 27 93 78 128 99 163 162 198 153 233 234

24 25 59 56 94 92 129 122 164 160 199 198 234 71

25 26 60 38 95 93 130 129 165 125 200 97 235 -1

26 27 61 59 96 94 131 64 166 165 201 141 236 -1

27 0 62 63 97 74 132 113 167 35 202 201 237 -1

28 22 63 26 98 96 133 132 168 116 203 202 238 -1

29 30 64 61 99 23 134 133 169 168 204 129 239 -1

30 31 65 30 100 98 135 71 170 60 205 204 240 -1

31 8 66 64 101 95 136 135 171 170 206 6 241 -1

32 28 67 68 102 96 137 136 172 171 207 138 242 -1

33 34 68 25 103 102 138 131 173 70 208 207 243 -1

34 35 69 66 104 103 139 138 174 173 209 208 244 -1
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Figure 3.1: Modern Art: Piglet meets Tigger 

Figure 3.1 shows a piece of modern art which is an image that might appear in a Web page devoted to A A 
Milne. The question now comes as to how should we compress images like this. Lempel and Ziv seems to 
manage reasonably well on black and white images with a great deal of repetition but how would it handle an 
image like this. The image is 24 pixels across by 16 pixels deep (we have magnified each pixel so it can be 
seen more easily. The orange and black represent Tigger and the pink shades represent Piglet. There are 
actually about 30 different colours in the picture and each pixel is defined by giving the Red, Blue and Green 
(RGB) intensities for each pixel. 
The table below gives the colours used: 

01 rgb(255,192,203) 16 rgb(255,222,233)

02 rgb(0,0,0) 17 rgb(235,145,0)

03 rgb(70,70,70) 18 rgb(30,30,30)

04 rgb(20,20,20) 19 rgb(255,225,238)

05 rgb(255,182,193) 20 rgb(255,228,238)

06 rgb(255,185,198) 21 rgb(40,40,40)

07 rgb(255,187,200) 22 rgb(255,230,240)

08 rgb(255,195,208) 23 rgb(255,182,193)

09 rgb(255,202,213) 24 rgb(255,172,183)

10 rgb(255,165,0) 25 rgb(255,175,0)

11 rgb(255,212,223) 26 rgb(0,0,255)

12 rgb(255,215,228) 27 rgb(55,55,55)

13 rgb(255,165,0) 28 rgb(155,155,155)

14 rgb(245,155,0) 29 rgb(205,205,205)

15 rgb(250,160,0) 30 rgb(225,225,225)
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The image itself consists of: 

19 15 27 01 06 20 05 18 27 02 18 05 01 11 06 01 19 20 27 20 08 05 25 27  
23 05 14 20 27 18 15 21 14 04 27 20 15 27 19 05 05 27 16 09 07 12 05 20  
27 01 14 04 27 16 15 15 08 27 05 24 16 12 01 09 14 05 04 27 01 19 27 20  
08 05 25 27 23 05 14 20 27 20 08 01 20 27 16 09 07 12 05 20 27 23 01 19  
27 01 27 22 05 18 25 27 19 13 01 12 12 27 01 14 09 13 01 12 27 23 08 15  
27 04 09 04 27 14 15 20 27 12 09 11 05 27 02 15 21 14 03 09 14 07 27 01  
14 04 27 01 19 11 05 04 27 20 09 07 07 05 18 27 14 15 20 27 20 15 27 02  
05 27 20 15 15 27 02 15 21 14 03 25 27 10 21 19 20 27 01 20 27 06 09 18  
19 20 27 01 14 04 27 20 09 07 07 05 18 27 23 08 15 27 08 01 04 27 02 05  
05 14 27 08 09 04 09 14 07 27 02 05 08 09 14 04 27 20 18 05 05 19 27 19  
01 09 04 27 20 08 01 20 27 01 27 20 09 07 07 05 18 27 23 01 19 27 15 14  
12 25 27 02 15 21 14 03 25 27 02 05 06 15 18 05 27 02 18 05 01 11 06 01  
19 20 27 01 14 04 27 20 08 01 20 27 01 19 27 19 15 15 14 27 01 19 27 20  
08 05 25 27 08 01 04 27 08 01 04 27 02 18 05 01 11 06 01 19 20 27 20 08  
05 25 27 02 05 03 01 13 05 27 17 21 09 05 20 27 01 14 04 27 18 05 06 09  
14 05 04 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27  

It is also pretty easy to get an idea how well this rather random image will compress if we substitute letters in 
the alphabet for the numeric pixel values: 

so after breakfast they  
went round to see piglet 
and pooh explained as t 
hey went that piglet was 
a very small animal who 
did not like bouncing a 
nd asked tigger not to b 
e too bouncy just at fir 
st and tigger who had be 
en hiding behind trees s 
aid that a tigger was on 
ly bouncy before breakfa 
st and that as soon as t 
hey had had breakfast th 
ey became quiet and refi 
ned  

So if Lempel and Ziv can handle quite random images and handles ones with long runs of pixels the same 
quite well, it seems that it would be a good candidate for compressing computer graphics images. A 
computer graphics image is one that has been generated by some computer system that creates pictures 
rather than real world images where the colour of each pixel is almost always slightly different from its 
neighbour and so may need a different technique to compress it. 

3.5 LZW 
Between 1977 and 1984, Lempel and Ziv produced a number of variations on the basic algorithm. There is a 
choice as to whether you check the whole of the document so far for matches or limit it to some window. By 
limiting you can reduce the size of the Code table required. If you are transmitting a pointer into a Code 
Table, it is feasible that at the beginning you can use a smaller number of bits than later on. 
In 1984, Terry Welch of Sperry Research Center proposed a variant, later called LZW. Welch was interested 
in compressing large volumes of data stored on discs in commercial environments. The information is 
assumed to be a mixture of text and numerical data intermixed. He was particularly conscious that in numeric 
data you often got stock numbers like 000474 and there was therefore opportunities for compression that 
never appeared in purely textual information. He was also interested in positional redundancy. The same 
character might appear in the same position of a record over many records (this is equivalent to a vertical line 
in an image where the same pixel in a set of scan lines is a different colour). Welch was interested in the 
work of Lempel and Ziv but was unimpressed by the poor performance early on when the system was 
learning what the basic set of symbols was. Also, they did not adapt when the information changed its basic 
characteristics. 
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LZW compression is quite similar to what has been described so far. The main points are: 

l The Code Table was a fixed size, normally 4096, requiring 12 bits to define an entry  
l The algorithm is a greedy one as we have described. The input tokens are read until the longest 

possible string is encountered in the Code Table. A new entry is made consisting of the Prefix plus the 
next character when a match is not made  

l The table is initialized with the single symbol alphabet that is likely to be encountered  
l The table is made fixed in width by not storing the characters in the Prefix but the position of the Prefix 

in the Code Table. So all new entries consist of two values, a pointer to the Prefix's Code Table entry 
and the character added to make this new entry  

l Welch recognised the problem at the decode stage where the new symbol was not yet in the Code 
Table and described how to handle this  

l The Code Table was a hash table to keep the lookup speed down  
l The algorithm was aimed at hardware compression as part of a disc subsystem on a large mainframe  

The Welch paper also pointed out that the Code Table could start without the basic symbols already installed 
and that the length of pointers to the Code Table could be smaller early on. His view was that by starting with 
8 bits per pointer early on rather than 12 would save about 7% but would increase the complexity 
significantly. Welch had the paper published while he was working for Digital Equipment Corporation but the 
work was done in 1983 when he worked at the Sperry Research Center. 
In December 1985, Unisys was awarded the patent US4558302: High speed data compression and 
decompression apparatus and method that effectively patents the LZW algorithm. Unisys claim that the 
patent was put in a drawer and forgotten. 
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4. GIF: the Graphics Interchange Format 

l 4.1 Introduction  
l 4.2 Format  
l 4.3 An Example  
l 4.4 Interlacing  
l 4.5 Optimisation  

4.1 Introduction 
In 1987, CompuServe developed a format for the interchange of computer graphics images called the 
Graphics Interchange Format (GIF). CompuServe was unaware of the Unisys patent and so used LZW 
compression as the basis for the GIF image format. It could have used alternative compression technologies 
such as run-length encoding. GIF became the standard format for interchanging computer graphics images 
on the Web and, even today, there are probably more GIF images around than any other format. It was not 
until 1993 that Unisys notified CompuServe that they had a patent on the algorithm and it took CompuServe 
until December 1994 to come to a licence agreement with Unisys. This allowed software developers 
associated with CompuServe to use the algorithm and Unisys agreed not to pursue royalty claims against 
them for past use. CompuServe developers had to pay a royalty of 15 cents to Unisys for every copy of the 
software sold. 
In consequence, building a GIF decoder probably contravenes the Unisys Patent but you are unlikely to be 
sued. Building a GIF encoder definitely does contravene the Unisys patent and so would require the 
organisation involved to pay a royalty fee. 

4.2 Format 
Figure 4.1 gives the overall structure of the GIF file that is transmitted. 

 
Figure 4.1: Overall GIF File Format 
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The main parts are: 

l GIF Signature: this is useful in establishing that the file is in deed a GIF file  
l Screen Descriptor: this gives some overall parameters to be used in rendering all the GIFs in the file  
l Global Colour Map: it is usual to define a single Colour Table for all the images in the GIF file  
l Extension Block: some proprietary extensions are allowed but they can be ignored  
l Image Descriptor: describes this GIF picture which may be the only one  
l Local Colour Map: defines the colours to be used for this image if it is different from the global 

definition of entries  
l Raster Data: the LZW compressed image  
l GIF Terminator: allows you to know when you have finished!  

Figure 4.2 shows the GIF Signature. It starts with six bytes defining either the ASCII characters GIF87a or 
GIF89a defined as a set of ASCII characters, one character per byte. This is followed by two bytes (with the 
first being the least significant) defining the width in pixels of the GIF and another two bytes that define the 
height. These will be used to establish the overall positioning on the screen of the output. The main point of 
interest is that the Lowest Significant Byte arrives first and the highest second. 

 
Figure 4.2: GIF Signature and Screen Descriptor 

Following the width and height is a set of flag bits in a byte that give (see Figure 4.2): 

l P: the three bottom bits define the number of bits per pixel (+1) that will be used when we encode the 
GIF  

l S: a flag that is rarely used to signify that the colour table is ordered and can be interpolated.  
l CR: defines the bits per pixel in the image. A value of 2 would define 3 bits per pixel initially  
l M: if set to 1, it indicates that a global colour table is present.  

The last two bytes of the Screen Descriptor define the background colour (relative to the Colour Table) to use 
and the pixel aspect ratio, which is usually set to 0 to indicate a square pixel. 
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Following the Screen Descriptor, it is usual to include a Global Colour table that applies to all the GIF images 
in the file. It may be impossible to change the Colour Table on the fly so having a single Colour Table for all 
the images is sensible. The table consists of a set of entries ( 2**(P+1) ) of Colour Table entries each 
consisting of three bytes for the R, G, B values as shown in Figure 4.3. This shows a 4-entry Colour Table 
defining White, Red, Green and Blue as colours occupying positions 0 to 3. The number of pixels needed to 
define pixel colours is at least 3 bits. 
After the Global Colour Map comes any Extension Blocks that start with a byte containing the hexadecimal 
value 21, followed by a byte indicating its type. this is followed by a byte indicating the length and a zero byte 
terminates the Extension Block. This can be ignored. 

 
Figure 4.3: GIF Global Colour Map 

Each image consists of an image descriptor followed by the data that defines the image. The Image 
Descriptor (see Figure 4.4). The Image Descriptor starts with its unique heading and follows this with the 
position that this image should take relative to the overall GIF image. This is useful when the GIF is really a 
set of GIFs making up the complete image. The left and top entries define the origin where the GIF is 
displayed in the window and the width and height define the size of the image. The Image Descriptor 
concludes with a set of flags that define: 

l M: if set to zero, the local Colour Map replaces the Global Colour Map. In practice, it rarely happens.  
l I: if set to 1 it indicates that the image is interlaced and that it would be wrong to allow people 

unfamiliar with GIF to use it.  
l PX: defines the bits per pixel when the local Colour Map is used.  
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Figure 4.4: GIF Image Descriptor 

 
Figure 4.5: GIF Image Data 
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Figure 4.5 shows the format of the Image Data that defines the GIF image. The first byte gives the number of 
bits needed to represent the data and this is usually one more than is specified by the CodeSize. The value 
2 CodeSize is called the ClearCode entry. Values smaller than the ClearCode specify entries in the Colour 
Table. Values greater than ClearCode+1 represent entries in the Code Table. The ClearCode+1 entry is 
called the End of Information entry. If it appears in the data stream, it indicates the end of the image data. 
In Figure 4.5, the value of 2 for the Code Size indicates that the image data starts with 3 bits per pixel. The 
ClearCode value is 4 and the End of Information value is 5. If the ClearCode appears in the data stream, it 
resets all the compression/decompression parameters and tables to the start up state. It is usual to have the 
ClearCode as the first entry in the data stream. The first entry in the Code Table for a Code Size of 2 is entry 
6. 
The image consists of a set of LZW compressed blocks each preceded by their length which is not more than 
256 bytes. There can be any number of these finishing with a null block. 
The LZW Compressed Data Stream is shown in Figure 4.6. The bytes are read with the Least Significant 
Bit first. In Figure 4.6, the bytes are shown from right to left. The alternative is to write them left to right but 
transposing all the bits in each byte. If the Code Size is 2, the bits will be read 3 at a time initially. If the Code 
Size was 8, 9 bits would be read at a time initially. With a Code Size of 2, the maximum Code Table entry 
possible is 7. When entry 8 is required in the Data Stream, the number of bits per output code is increased to 
4. when entry 16 is required, the number of bits is increased to 5 and so on. Figure 4.6 shows the 
arrangement. 
Finally, the GIF decoder terminates with a byte containing the hexadecimal value 3b, the GIF Terminator. 

 
Figure 4.6: LZW Compressed Data 
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4.3 An Example 
Here is a typical small GIF image: 

47 49 46 38 39 61 27 00 19 00 91 ff 00 ff ff ff ff 00 00 00  
00 ff 00 00 00 21 f9 04 01 00 00 00 00 2c 00 00 00 00 27 00  
19 00 00 02 8c 04 62 29 cb 72 01 21 68 34 21 e3 5e c2 ed 45  
44 2d d6 c5 8d 5b f7 49 a1 21 9d 1d bb 4d 4e 0a 32 56 1c da  
5a 4c cb a6 92 7b ed 58 a9 4d 0b 18 ac 10 89 9f a5 2b 19 bc  
f5 48 9c 68 ec 6a 2c 62 b7 1e 9a f7 0b 0e 8b c7 e4 b2 f9 8c  
4e ab d7 6c 33 17 db 7b 5f 93 bc ae 84 04 a5 67 99 11 a7 2c  
2f b2 37 d2 f4 f3 a7 e7 27 12 27 78 08 53 35 53 14 78 e3 98  
f1 b3 d2 23 34 a4 93 69 09 89 b9 13 88 17 75 b9 62 54 09 65  
57 93 b3 57 00 00 3b 

We can identify the component parts more easily if we adjust where the page breaks come: 

47 49 46 38 39 61 GIF Signature 
27 00 19 00 raster width and height, Least Significant Byte first 
91 Code value M CR S P (10010001) M=1, CR=1, S=0, P=1 
ff 00 Background colour and pixel ratio 
ff ff ff Colour table, first entry White 
ff 00 00 Red 
00 00 ff Blue 
00 00 00 Black 
21 f9 Extension Block 
04 01 00 00 00 Four Entries 
00 Terminate Extension Block 
2c Image Separator 
00 00 00 00 Left and Top 
27 00 19 00 Width and Height 
00 M=0, I=0, PX=0 (Non-interlaced image using the Global Colour Table) 
02 Code Size is 2 
8c 140 bytes of image data to follow 
04 62 29 cb 72 01 21 68 34 21 e3 5e c2 ed 45 44 2d d6 c5 8d  
5b f7 49 a1 21 9d 1d bb 4d 4e 0a 32 56 1c da 5a 4c cb a6 92  
7b ed 58 a9 4d 0b 18 ac 10 89 9f a5 2b 19 bc f5 48 9c 68 ec  
6a 2c 62 b7 1e 9a f7 0b 0e 8b c7 e4 b2 f9 8c 4e ab d7 6c 33  
17 db 7b 5f 93 bc ae 84 04 a5 67 99 11 a7 2c 2f b2 37 d2 f4  
f3 a7 e7 27 12 27 78 08 53 35 53 14 78 e3 98 f1 b3 d2 23 34  
a4 93 69 09 89 b9 13 88 17 75 b9 62 54 09 65 57 93 b3 57 00  
00 Null size next Code Block 
3bGIF Terminator 

This indicates that the image following contains the colours white, red, blue and black. That it is 39 pixels 
wide (hex 27) and 25 pixels high (hex 19). The image is not interlaced which means that the image rows 
appear in the correct order. The number of bits making up the data stream initially is 3. We now have the 
problem of decoding the data stream. The first few bytes are: 
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04 62 29 cb 72 01 21 68 in hexadecimal 
00000100 01100010 00101001 11001011 01110010 00000001 00100001 01101000 in 
binary 
00100000 01000110 10010100 11010011 01001110 10000000 10000100 00010110 
with least significant bit first 
001 000 000 100  
0110 1001 0100 1101 0011 0100 1110 1000  
00001 00001 00000 10110 Splitting correctly as we build the Code Table 
4 0 0 1 6 9 2 11 12 2 7 1 16 16 0 13 converting to decimal, least significant bit first  

To make the decision when to change the bit size per entry depends on when the last entry in the Code 
Table has reached the maximum value. Thus it is necessary to build the Code Table as you decode the GIF. 
The complete GIF is the set of entries: 

  4   0   0   1 
 
 
  6   9   2  11  12   2   7   1 
 
 
 16  16   0  13  20   9   8   6  14  15   9  24  13  15  17   8 
 
 
 20  11  22  23  28  35  27  29  31  18  33   6  18  39  29  44   
 
 27  19  14  41  32  12  22  49  33  54  26  49  52  50  38  10 
 
 
 57  47  59  44  41  27  45  64  65  21  68  68  31  75  46  73  
 
 65  55  61  36  28  81  49  87  70  69  88  91  30  52  94  95 
 
 96  97  98  99 100 101 102 103 104 105 106 107 108 102  92  88  
 
 61 111  87  73  60  93  18  36  80 116  89  76  17  78  50 121 
 
 
 34 123  35  77  63 127 122 126  34 113 130 135  48  85  51  69  
 
129  55 142  25  63  43  61  66  67  58 153 150 144 152  59 129  
 
120  81 151  43  70 149  80 118  53  57 123   5  
 

The first entry is the ClearCode value 4 that resets all the table entries to their initial values. The four Colour 
Table entries are: 

l 0: White (W)  
l 1: Red (R)  
l 2: Blue (B)  
l 3: Black (K)  
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The GIF Encoder and Decoder are very similar to the LZW Encoder and Decoder defined in Section 3.4. The 
major difference is where the Prefix and Suffix are stored. Looking at the Code Table generated in Section 
3.4, it can be seen that if you output the Code Table entries less the last character each time starting at entry 
27, you create the original string. Also the last character of each entry is the first character of the next entry. 
Using this information, the GIF Decoder is as follows: 

C=ClearCode+2; 
repeat 
 
Get NextCode; 
 
if NextCode = ClearCode initialize; 
 
if NextCode < ClearCode add NextCode as new entry to Code Table 
 
if NextCode > ClearCode+1   
 
   {Create new entry consisting of Code Table [NextCode] 
 
    plus first entry of Code Table [NextCode+1] 
 
   } 
 
Output Entry C and Increment C; 
end repeat 
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The Code Table produced is: 

6 W 48 WWR 90 RRRRRW 131 WWWRR

7 W 49 WWWW 91 WWWWWWW 132 RRRRW

8 R 50 WB 92 WWWWWWWW 133 WWWRRWW

9 WW 51 BW 93 WRRR 134 WBBB

10 WWW 52 RRRRR 94 RRRRRR 135 BBBBBBBBBWW

11 B 53 RWB 95 RRRRRRR 136 WWRRWWW

12 BB 54 BBB 96 RRRRRRRR 137 BBW

13 BBB 55 WWWR 97 RRRRRRRRR 138 RRRRRRWW

14 B 56 WWWWW 98 RRRRRRRRRR 139 WWWWRRWW

15 WR 57 BBBBBB 99 RRRRRRRRRRR 140 BBBBBBBBBWWW

16 R 58 BBBW 100 RRRRRRRRRRRR 141 WWRW

17 RR 59 WRRW 101 RRRRRRRRRRRRR 142 WWBBB

18 RR 60 WWWWW 102 RRRRRRRRRRRRRR 143 BWR

19 W 61 RRRRRR 103 RRRRRRRRRRRRRRR 144 RRRRRW

20 BBBB 62 WBB 104 RRRRRRRRRRRRRRRR 145 BBWW

21 BBBBB 63 WWWRRW 105 RRRRRRRRRRRRRRRRR 146 WWWRW

22 WWW 64 WWWB 106 RRRRRRRRRRRRRRRRRR 147 WWBBBB

23 RW 65 BBBBBBB 107 RRRRRRRRRRRRRRRRRRR 148 BWW

24 WW 66 BBBBWW 108 RRRRRRRRRRRRRRRRRRRR 149 WWWRRWW

25 BW 67 WRRWW 109 RRRRRRRRRRRRRRRRRRRRR 150 BBBBBBW

26 WRR 68 WWR 110 RRRRRRRRRRRRRRR 151 RRRRRRW

27 WWW 69 RRRRR 111 WWWWWWWWW 152 BBBBWWW

28 WWB 70 WWWW 112 WWWWWWW 153 WRRWWW

29 BBBB 71 RRWW 113 RRRRRRW 154 BBBWW

30 WRR 72 WWWBB 114 WWWWWWWWWW 155 WRRWWWB

31 RRR 73 BBBBBBBB 115 WWWWWW 156 BBBBBBWR

32 RW 74 BBBBBW 116 BBBBBBBBB 157 RRRRRWB

33 BBBBB 75 WWRR 117 WWWWWR 158 BBBBWWWW

34 BB 76 WWRR 118 WRRRR 159 WRRWW

35 WWWR 77 RRRR 119 RRW 160 BBWW

36 RWW 78 WWRRW 120 RWWW 161 RWWWB

37 WWBB 79 WWWWBB 121 BBBBBBBBBB 162 BBBBBBBBW

38 WWWRR 80 BBBBBBBBB 122 BBBBBBBBBW 163 RRRRRRWB

39 WWWW 81 BBBBBBBB 123 WWWWRR 164 BBBBBBW

40 BBBBW 82 WWWRW 124 WWRRR 165 WWWWR

41 RRRR 83 RRRRRRW 125 RRR 166 WWWRRWWB

42 RRW 84 RWWW 126 WWRRWW 167 BBBBBBBBBB

43 BBBBBB 85 WWBB 127 WBB 168 WRRRRR

44 WW 86 BBBBBBBBW 128 BBBBBBBBBBB 169 RWBB

45 RRW 87 WWWWW 129 BBW 170 BBBBBBB

46 WWWWB 88 WWWWWW 130 WWWWRRW

47 BBBBW 89 WWWWR 131 WWWRR
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If we go through the Code Table, outputting the entries in turn and placing them in rows of 39 entries: 

WWRWWWWWBBBBBBBWRRRRRRWBBBBBBBBBWWWRWWW 
BWWRRWWWWWBBBBBWRRRRRRWBBBBBBBWWWRRWWWW 
BBWWWRRWWWWBBBBWRRRRRRWBBBBBBWWRRWWWWWB 
BBBBWWWRWWWWWBBWRRRRRRWBBBBWWWRWWWWWBBB 
BBBBBBWWRRWWWWWWRRRRRRWBBWWWRRWWWWBBBBB 
BBBBBBBWWWRRWWWWRRRRRRWWWWRRWWWWWBBBBBB 
BBBBBBBBBWWWRRWWRRRRRRWWRRWWWWWBBBBBBBB 
BBBBBBBBBBBWWWRWRRRRRRWRWWWWWBBBBBBBBBB 
WWWWWWWWWWWWWWWWRRRRRRWWWWWWWWWWWWWWWWW 
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
WWWWWWWWWWWWWWWWRRRRRRWWWWWWWWWWWWWWWWW 
BBBBBBBBBWWWWWRWRRRRRRWRWWWBBBBBBBBBBBB 
BBBBBBBWWWWWRRWWRRRRRRWWRRWWWBBBBBBBBBB 
BBBBBWWWWWRRWWWWRRRRRRWWWWRRWWWBBBBBBBB 
BBBBWWWWRRWWWBBWRRRRRRWWWWWWRRWWBBBBBBB 
BBWWWWWRWWWBBBBWRRRRRRWBBWWWWWRWWWBBBBB 
WWWWWRRWWBBBBBBWRRRRRRWBBBBWWWWRRWWWBBB 
WWWRRWWWBBBBBBBWRRRRRRWBBBBBWWWWWRRWWBB 
WWRWWWBBBBBBBBBWRRRRRRWBBBBBBBWWWWWRWWW 
RRWWBBBBBBBBBBBWRRRRRRWBBBBBBBBBWWWWRRW 

Figure 4.7 shows a blown-up view and also a real size view of the image. 

 
Figure 4.7: GIF Image 
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4.4 Interlacing 
If the Interlace Bit was set to 1 in the GIF Image Descriptor, the GIF image is not transmitted row by row in 
order from top to bottom. Instead, rows of the image are output in a different order. Four passes are made 
with each pass filling in the rows not already transmitted in the set: 

l Every eighth row is transmitted as pass 1  
l Every fourth row is transmitted as pass 2  
l Every second row is transmitted as pass 3  
l The remaining rows are transmitted  

Figure 4.8 shows the blown-up image as it would appear after each pass has been transmitted. The image is 
clearly identifiable after pass 3 and a guess to its form could be made after pass 2. 

 
Figure 4.8: GIF Interlacing 

4.5 Optimisation 
Many GIF images on the Web are not as efficient as they might be. Some of the reasons for this inefficiency 
are: 

l If images have been scanned in, the number of colours in the Colour Table may be larger than 
needed. Removing duplicate entries or merging two close colours into one. Make sure all the entries in 
the table are actually used.  

l Frequently, images use a larger number of bits per Code Table Entry than is necessary  
l Replace local colour tables and have a single Global Colour Table  
l For images less than 10 kbytes, using interlacing probably is not sensible  
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5. PNG: Portable Network Graphics 

l 5.1 Introduction  
l 5.2 Concepts  
l 5.3 Image Transformations  
l 5.4 Encoding the PNG Image  
l 5.5 PNG Datastream Format  
l 5.6 An Example  

5.1 Introduction 
When the Unisys Patent hit the Web, there was a concerted effort to produce an alternative format that was 
free of patents. A Working Group was formed and the Portable Network Graphics (PNG) format was the 
result. PNG 1.0 has been available for over 5 years now and is widely accepted by browsers as an 
alternative to GIF. It is aimed at the transmission of computer graphics images, as was GIF, but it has a 
number of extensions including better transparency support, better colour support, better interlacing and is 
more efficient. Most of today's graphics design tools allow images to be stored in either GIF or PNG formats. 

5.2 Concepts 
PNG prepares an image for transmission through a number of stages: 

1. The starting point is a source image to be encoded as a PNG datastream. Conceptually, the source 
image always has a colour or greyscale value for each pixel  

2. A PNG image is created by transforming this image by some or all of alpha separation, scaling, 
indexing and alpha indexing. This results in five different types of image with different properties.  

The generic starting point for PNG is the PNG pixel shown in Figure 5.1. Unlike GIF images, each PNG pixel 
can have its own RGB and transparency specified. Some images may have a limited set of colour values in 
which case they can be indexed as in GIF. Also, if it is a monochrome image, The RGB values can be 
replaced by a single greyscale value. Note also that each pixel can have its transparency specified as well 
(alpha value between 0 and a maximum value). Again, there are image types where transparency can be 
specified as either visible or invisible and no intermediate values. 

 
Figure 5.1: PNG Pixel 
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The aim is to convert all the images that need to be transformed into a PNG datastream in one of the 
following forms: 

l Greyscale image, no alpha channel  
l Truecolour image, no alpha channel  
l Indexed-colour (a la GIF)  
l Greyscale image with alpha channel  
l Truecolour image with alpha channel  

The different types are illustrated in Figure 5.2. On the left is the value that each pixel can have. Indexed 
colour is similar to the GIF format where each pixel has an index value that points into a Colour Table. In the 
figure, the pixel illustrated has a value of 3 which points to the entry 3 in the Colour table so that the RGB 
values of the pixel are 176, 208, 176 respectively, a light green. The alpha value is set to 255, the maximum 
value being used and so the pixel is fully opaque. In the other four cases, each pixel has the information 
about its colour and transparency stored with it and there is no Colour Table. The four cases come from 
whether the pixel is colour or a greyscale and whether it is opaque or has a transparency value. Clearly, this 
allows much finer control of the content of each pixel but may result in a much larger image in terms of 
storage. In consequence, PNG images spend a great deal more time trying to massage the image before 
compressing it to ensure that the image is compressed as much as possible. 

 
Figure 5.2: PNG Image Types 
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Rather than allow all possible values for the pixel's RGB and Alpha values, some limits are placed on the 
types of image that PNG is able to compress: 

For example, you might start with a 3-bit per sample image which has its own R, G and B values for each 
pixel. It may have an alpha (transparency value) which is defined in 2 bits. What the table says is that the 
truecolour image (RGB values for each pixel) must be scaled to 8 bits per pixel unless all the pixels have the 
same R, G, and B values in which case it could be transformed into a greyscale image. In this case it could 
be scaled to 4 bits per pixel. Looking at the table above, it can be seen, for example, that you could have a 2-
bit per pixel greyscale image or a 4-bit per pixel indexed image (where the Colour Table is still 8 bits for each 
of R, G and B). Thus there is quite a lot of work to be done in choosing the right format out of the many 
possibilities in PNG. The aim is to have much more control over the colour of pixels than is possible with GIF 
images and still be efficient in terms of storage requirements. If this can be done, it gives PNG the 
opportunity to handle real world images in a lossless way as well as handling the computer graphics images 
that GIF was aimed at. Thus PNG is also a possible competitor to JPEG for small real world images or ones 
that have a limited set of colour possibilities. 
PNG calls the array of samples of a particular type (for example, green samples) a channel. Each horizontal 
row of pixels is called a scanline. Pixels are ordered from left-to-right within each scanline and scanlines are 
ordered top-to-bottom as with GIF images. The sample depth is the number of bits used to specify a sample 
in an image. The samples for a pixel may have different sample depths. An alpha value of zero defines a fully 
transparent pixel and a fully opaque pixel is defined by the maximum value.  

5.3 Image Transformations 
Figure 5.2 shows the transformations that can be applied to an image to create the PNG image to be 
encoded. 

 
Figure 5.3: PNG Transformations 

PNG image type Colour type Allowed image bit depth Allowed sample depths 

Greyscale, no alpha channel 0 1, 2, 4, 8, 16 1, 2, 4, 8, 16 

Truecolour, no alpha channel 2 8, 16 8, 16 

Indexed-colour 3 1, 2, 4, 8 8 

Greyscale with alpha channel 4 8, 16 8, 16 

Truecolour, with alpha channel 6 8, 16 8, 16 
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There are a number of situations where it does not make sense in having an alpha channel. The first is 
where there is no alpha channel initially and the assumption is that all the samples are opaque. If all the 
pixels have the same maximum value, the same is true. So the first operation determines whether or not 
there is a need for an alpha channel. 
If the sample depth in the source image does not correspond to an allowed sample depth for the PNG image 
being encoded, the possible sample values in the reference image are linearly mapped into the next 
allowable range for the PNG image. Figure 5.4 shows, if the sample depth in the source image was 3 and the 
next allowable depth in the PNG image was 4, how the possible values are mapped into a PNG image with 
depth 4. 

 
Figure 5.4: PNG Scaling 

If the number of distinct pixels in the reference image is small, an indexed-colour representation might be 
more efficient. In this case, the array of pixels in the image is replaced by an array of indices of the same 
dimension. Each position in the indexed colour array contains a pointer into a table (see Figure 5.5), called 
the palette, and this has an associated alpha value. Depending on how many different alpha values there 
are, there are several alternative ways to store the alpha channel. 
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Figure 5.5: Colour Table 

The final transformation stage is provided for images where the number of distinct alpha values is limited or 
where alpha values are either completely opaque or completely transparent.  
For indexed-colour images, users are encouraged to rearrange the palette so that the table entries with the 
opaque alpha value are grouped at the end. In this case, the palette can be shortened to include only the 
non-opaque entries.  
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5.4 Encoding the PNG Image 
Encoding a PNG image is shown in Figure 5.6. 

 
Figure 5.6: Encoding the PNG Image 
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The stages are: 

1. Pass abstraction: to allow for progressive display; the PNG image is converted into one or more 
images. This is often called interlacing although the way PNG does it makes interlacing a less obvious 
word.  

2. Scanline abstraction: the image is processed a scanline at a time.  
3. Filtering: each scanline is transformed into a filtered scanline using one of the defined filter types to 

prepare the scanline for image compression.  
4. Compression: occurs on all the filtered scanlines in the image.  
5. Chunking: the compressed image is divided into conveniently sized chunks and an error detection 

code is added to each chunk.  
6. Datastream construction: the chunks are inserted into the datastream.  

 
Figure 5.7: PNG Interlacing 

Pass abstraction (see Figure 5.7) splits a PNG image into a sequence of smaller images where the first 
image defines a very coarse view of the original source image and subsequent images enhance this coarse 
view until the last image completes the original source image. The set of reduced images is also called an 
interlaced PNG image. The only interlace method other than scanline at a time is one that makes multiple 
passes over the image to produce a sequence of seven reduced images. The method is called Adam7.  
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It looks complicated but effectively the last pass has all the pixels in an 8 by 8 block. The sixth path misses 
out every other row; the fifth path misses out every other column; the fourth pass misses out every other 
remaining row; the third pass misses out every other remaining column and so on. In Figure 5.8, the pass 
where pixels appear first out of an 8 by 8 array are shown. The effect of the method are also shown. this 
should be compared with Figure 4.8. Because the PNG interlacing is based on areas, the understanding of 
the image versus pixels transmitted is much better for PNG than GIF. 

 
Figure 5.8: Example of Interlacing 

PNG defines a number of filters that may be used to prepare the image data for compression. The filters 
define a set of strategies for changing the representation of each pixel depending on what the neighbouring 
pixel values are. Different filters can be used for each scanline so there is a certain amount of preprocessing 
before the optimal one is chosen. Filtering transforms the byte sequence in a scanline to an equal length 
sequence of bytes preceded by the filter type (see Figure 5.9). 
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Figure 5.9: PNG Filtering 

The set of methods each modify the R, G, B or Alpha value of a pixel by the pixel values of the same type to 
the left, above, and left and above. The process is easily undone so that at the far end the original values 
can be recovered. The aim is to produce values that are easy to compress. For example, if each Red value 
was an increment from the previous value of 10 say (R values could be 10, 20, 30, 40, 50, etc). this would be 
an image where the red content was rising linearly from one side to the other. If the filter applied was to take 
the current pixel value and subtract the value of its left neighbour, the values would now be 10, 10, 10, 10, 10 
and thus relatively easy to compress. The set of filter types currently are: 

l None: out=Pixel  
l Sub: out=Pixel-Left  
l Up: out=Pixel-Up  
l Average: out=Pixel-floor(0.5*(Left-Above))  
l Paeth: see Figure 5.10  

The Paeth algorithm is named after Alan W Paeth and there are no patents on the algorithm. 
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Figure 5.10: Paeth Filtering 

The sequence of filtered scanlines in the interlaced PNG image derived are compressed. The concatenated 
filtered scanlines for the interlaced PNG image are the input to the compression stage. The output from the 
compression stage is a single compressed datastream. 

 
Figure 5.11: PNG Compression 

Chunking provides a convenient breakdown of the compressed datastream into manageable chunks (see 
Figure 5.12). Each chunk has its own redundancy check.  
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5.5 PNG Datastream Format 
The PNG Datastream starts with an 8-byte Signature similar to GIF and is followed by a sequence of 
Chunks as shown in Figure 5.12. Each chunk starts with a 4-byte length of its chunk data in bytes followed 
by the 4-byte Chunk Type. Each Chunk has its own 4-byte CRC check of the Chunk Data. It is possible to 
have Chunks with no Chunk Data. The Signature has the characters PNG in it plus some non-printing 
characters aimed at ensuring that additional carriage returns and line feeds have not been added. 

 
Figure 5.12: PNG Coding 

The Chunk Header appears to be a set of ASCII characters but the bit indicated is used as a flag. Whether 
the four flag bits are set or not shows up in the ASCII value being upper or lower case. If the Flag Bit is not 
set it is upper case and if it is set it is lower case. From first to last, these four flags are: 

l 0=Critical, 1=Ancillary  
l 0=public, 1=private  
l 0 always  
l 0=unsafe to copy, 1=safe to copy  



-- 40 -- 
© Oxford Brookes University 2002 

There are 18 chunk types of which the first four are called critical chunks that must be understood by a 
decoder: 

l IHDR: an image header that is the first chunk  
l PLTE: palette table associated with indexed PNG images  
l IDAT: image data chunks  
l IEND: image trailer that is the last chunk in a PNG datastream  

The other 14 chunk types are called ancillary chunk types which a decoder may ignore. 

l cHRM, gAMA, iCCP, sBIT, sRGB which provide additional information concerning the colours in the 
image  

l bKGD, hIST, tRNS, pHYS, sPLT which provide additional information about the image and its 
presentation  

l iTXt, tEXt, zTXt: which provide textual information about the image  
l tIME: which provides a time stamp indicating when the PNG image was last modified  

Briefly, the ancillary information, which may be ignored is: 

Figure 5.13 shows the format of the IHDR Chunk which contains similar information to the GIF Descriptor. 
The width and the height of the image are defined in 4 bytes so very large images could be specified. In the 
diagram, the Colour type is set to 3 indicating that is using a palette. The only compression defined so far is 
that used for zipping files etc. The only Filter Method defined so far is Filter Method 0 which has the five 
filters defined earlier. The interlace possibilities are Adam7 and no interlacing (value set to 0). 

Type Description

Background colour 
(bKGD)

Colour to be used when presenting the image if no better option is available.

Gamma and 
chromaticity (cHRM, 
gAMA)

The gamma characteristic of the image with respect to the original scene together 
with chromaticity characteristics of the RGB values in the source image. Using 
information about the display device, room lighting, etc allows a more realistic 
appearance of the image. 

ICC profile (iCCP) Describes the colour space (in the form of an International Color Consortium ICC 
profile) to which the image samples conform.

Image histogram 
(hIST)

Frequency estimates of the usage of each entry in the palette by the PNG image.

Physical pixel 
dimensions (pHYS)

Intended pixel size and aspect ratio to be used in presenting the image.

Significant bits (sBIT) The number of bits that are significant in the channel values or the palette.

sRGB colour space 
(sRGB)

The sRGB colour space and the required rendering intent may be specified.

Suggested palette 
(sPLT)

A reduced palette may be provided for use when the display device is not capable of 
displaying the full range of colours in the image. 

Textual data (iTXt, 
tEXt, zTXt)

Textual information associated with the source image that may be compressed.

Time (tIME) Gives the time when the PNG image was last modified.

Transparency (tRNS) Provides alpha information that allows the source image to be reconstructed when 
the alpha channel is not retained in the PNG image.



-- 41 -- 
© Oxford Brookes University 2002 

 
Figure 5.13: IHDR Chunk 

The format of the PLTE Chunk is the same as GIF; each palette entry has a byte for Red followed by Green 
and then Blue. 
The IDAT Chunks are zlib (see Appendix D) compressed. This compression method uses Huffman encoding 
to decrease the number of bits needed. Thus an analysis of the frequency of various values is checked 
before compression. The method for sending the data is similar to LZW but does not have any patent 
problem. Normally, a user would call the zlib library to deflate (compress) or inflate (decompress) an IDAT 
Chunk. 

5.6 An Example 
If we look at the PNG file equivalent to the GIF one described earlier, it has the form: 

89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 27 00 00 00 19 02 
03 00 00 00 cf bd df 7b 00 00 00 0c 50 4c 54 45 ff ff ff ff 00 00 00 00 ff 
00 00 00 6f c6 08 f7 00 00 00 01 74 52 4e 53 00 40 e6 d8 66 00 00 00 01 62 
4b 47 44 03 11 0c 4c f2 00 00 00 08 68 49 53 54 01 38 01 94 01 03 00 00 87 
15 b6 20 00 00 00 1b 74 45 58 74 53 6f 66 74 77 61 72 65 00 67 69 66 32 70 
6e 67 20 30 2e 36 20 28 62 65 74 61 29 aa dd 69 92 00 00 00 8c 49 44 41 54 
78 9c 9d 90 c1 09 04 21 0c 45 bf e2 c0 e2 d9 22 c4 2a 2c 21 23 9b 7e 9c 4e 
3c 86 54 39 89 c3 c0 9e 37 17 1f 44 7c ff 8b 04 15 1e aa 01 b8 7a 76 5c 05 
58 25 3a 5e fd 03 db 54 1e 92 20 d0 45 e0 31 29 1b ca 01 a6 03 cd 50 27 31 
51 54 47 49 7c a2 19 fa 30 3d c7 3b df 7f f1 e7 31 b3 99 22 aa db 04 2e 76 
9b ce 1d 67 67 00 55 bb 4b 86 2b 78 8b 99 2c 2f 4a 33 94 d0 05 a1 ef c6 28 
15 29 6f 5c 56 9e f4 f9 07 d0 0d 7d 09 51 da 2a 32 6c f9 00 00 00 00 49 45 
4e 44 ae 42 60 82  
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This can be shown better as follows: 

89 50 4e 47 0d 0a 1a 0a PNG Signature 
00 00 00 0d IHDR Chunk Length = 13 
49 48 44 52 IDAT Chunk 
00 00 00 27 Width=39 
00 00 00 19 Height=25 
02 Bit Depth=2 
03 Colour Type=3 (indexed colour) 
00 Compression Method=0 
00 Filter Method=0 
00 Interlace Method=0, No Interlace 
cf bd df 7b Chunk CRC Check 
00 00 00 0c Chunk Length=12 
50 4c 54 45 PLTE Chunk 
ff ff ff White 
ff 00 00 Red 
00 00 ff Blue 
00 00 00 Black 
6f c6 08 f7 Chunk CRC Check 
00 00 00 01 Chunk Length=1 
74 52 4e 53 tRNS Chunk 
00 Alpha value for Palette Index 0 is 0 (opaque) 
40 e6 d8 66 CRC Check for Chunk 
00 00 00 01 Chunk Length=1 
62 4b 47 44 bKGD Chunk 
03 Palette Index 3 
11 0c 4c f2 CRC Check for Chunk 
00 00 00 08 Chunk length=8 
68 49 53 54 hIST Chunk 
01 38 312:White 
01 94 404:red 
01 03 259:Blue 
00 00 0:Black 
87 15 b6 20 CRC Check for Chunk 
00 00 00 1b Chunk Length=27 
74 45 58 74 tEXT 
53 6f 66 74 77 61 72 65 00 Software  
67 69 66 32 70 6e 67 20 30 gif2png 0 
2e 36 20 28 62 65 74 61 29 .6 (beta) 
aa dd 69 92 CRC Check for Chunk 
00 00 00 8c Length=140 
49 44 41 54 IDAT Chunk 
78 9c 9d 90 c1 09 04 21 0c 45 bf e2  
c0 e2 d9 22 c4 2a 2c 21 23 9b 7e 9c 4e 3c 86 54 39 89 c3 c0 9e 37 17 1f  
44 7c ff 8b 04 15 1e aa 01 b8 7a 76 5c 05 58 25 3a 5e fd 03 db 54 1e 92  
20 d0 45 e0 31 29 1b ca 01 a6 03 cd 50 27 31 51 54 47 49 7c a2 19 fa 30  
3d c7 3b df 7f f1 e7 31 b3 99 22 aa db 04 2e 76 9b ce 1d 67 67 00 55 bb  
4b 86 2b 78 8b 99 2c 2f 4a 33 94 d0 05 a1 ef c6 28 15 29 6f 5c 56 9e f4  
f9 07 d0 0d 7d 09 51 da  
2a 32 6c f9 CRC Check 
00 00 00 00 Chunk Length=0 
49 45 4e 44 IEND Chunk 
ae 42 60 82 CRC Check for IEND Chunk 
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The file is 306 bytes long compared with 187 bytes for the equivalent GIF image. Part of this is due to 
including a number of ancillary chunks to illustrate the format. If we removed these and accepted the defaults 
(which in this case would be correct), the file size would be decreased by 85 bytes to 221 bytes. So for very 
small images that do not need the facilities of PNG, it is likely that the PNG file size will be greater than the 
equivalent GIF. In both cases the size of the image data is 140 bytes. As you would expect with the similarity 
between the algorithms, there is little to choose between the compression methods. 
Greg Roelofs has done some more detailed tests and had these results: 

As a separate exercise, he transformed the W3C icon library of 448 GIF images with a total size of 1.810 
Mbytes and this reduced to 1.555 Mbytes as PNG images, a saving of 14%. These savings are not 
enormous but are significant. 
The one GIF image that was smaller than the equivalent PNG in the table was an interlaced image. PNG's 
interlacing does allow the image to be seen quicker but the many passes does make it more difficult to 
compress. 

File Size as GIF Size as PNG Size as Crushed PNG Improvement (%)

Linux penguin 38280 35224 34546 10

Small penguin 1249 722 710 43

Big Crash 298529 283839 282948 5

L Georges 20224 20476 19898 2

Rasterman 4584 4812 4731 -3

Sun Logo 1226 566 550 55

Scsi 27660 20704 19155 31
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6. CGM: the Computer Graphics Metafile 

l 6.1 Introduction  
l 6.2 Structure  
l 6.3 Web Profile  
l 6.4 An Example  

6.1 Introduction 
The Computer Graphics Metafile (CGM) is a well established ISO Standard for transmitting 2D vector 
graphics data between applications. It is widely used in the engineering industry (aeronautics, automobile, 
process engineering, architectural design etc). 

6.2 Structure 
The structure of a CGM file is shown in Figure 6.1. Picture size and scaling and properties such as line width 
and background colour are defined in the Picture Descriptor. This is equivalent to styling provided for the 
<body> element in an HTML page. 

Figure 6.1: CGM Architecture 

6.3 CGM Web Profile 
The CGM community saw major advantages in using CGM rather than images on the Web: 

l Vector graphics can be zoomed in and out while retaining the quality of the picture, unlike images.  
l Vector graphics files are smaller and can be downloaded and viewed faster than images.  
l Vector graphics can be interacted with in a meaningful way.  
l Text in a CGM vector graphics drawing can be searched as easily as text in an HTML page.  

In consequence, CGM suppliers provided CGM plug-ins to access CGM vector graphics on the Web using 
the existing encodings. A CGM MIME type was agreed in 1995. The only problem was that the CGMs 
produced by one vendor could not be read by viewers produced by another as different Profiles were 
implemented and the hyperlinking mechanisms introduced differed from one supplier to another.  
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A joint activity between the World Wide Web Consortium (W3C) and the CGM Open Consortium [12] 
(launched in May 1998) was initiated to define a common Web Profile for CGM that would be accepted both 
by ISO and W3C. This resulted in the WebCGM Profile, completed in January 1999 [6]. 
WebCGM was based on the ATA CGM Profile for graphics interchange (GREXCHANGE). The Graphics 
Working Group (ATA 2100) of ATA, the Air Transport Association, had defined this CGM Profile for the 
aerospace industry. It was also working towards an intelligent graphics exchange profile (IGEXCHANGE) 
that associated semantic information to aid query, searching and navigation. 
In WebCGM, each picture contains CGM graphic elements. There are 4 groupings of graphical elements 
provided: 

l grobject: a graphical object with a unique id and possibly linkURI and tooltip attributes. It is used to 
identify sources and destinations of hyperlinks. It is also possible to define the region of the group for 
picking and the initial view when the group is linked to. For example, more than the group may need to 
be visible to indicate the context.  

l layer: this has a name and a list of objects. It allows a picture to be divided into a set of graphical 
layers that can be used to switch display to parts of an illustration.  

l para: defines a paragraph as the grouping of several text drawing elements. The elements may be 
scattered across the drawing but for searching purposes are similar to an HTML paragraph.  

l sub-para: a sub-paragraph used to identify fragments of text (for example as hotspots within a 
paragraph).  

These provide the basis for searching and linking within and between CGM pictures. An object may be the 
target of a link. Browsers are expected to move the object into view and scale it to fit into the viewport. If the 
object has a ViewContext attribute the rectangle defining the view context must be within the viewport. 
Links from WebCGM objects are defined by linkURI elements that are modelled on the XLink facilities. 
Objects may have multiple links. Links can be bi-directional. Linkage can be from places outside the CGM 
and links from the CGM can be to any destination defined by a URL. Following a link can display the new 
picture in a separate window, load the picture into the current frame, load it over the parent of the current 
frame or replace the current picture. 
WebCGM is a reasonably full profile of CGM containing a rich set of graphics elements: 

l Polylines, disjoint polylines, polygons, polygon sets.  
l Rectangles, circles, ellipses, circular and elliptical arcs, pie slices.  
l Text: both the Restricted Text primitive of CGM (which defines its extent box) and the Append Text 

element (continuation of a text string with a change of attributes).  
l Closed Figure and Compound Line: allows complex paths to be defined as a sequence of other 

primitives.  
l Polysymbol: placement of a sequence of symbols defined in the Symbol Library (another valid 

WebCGM metafile).  
l Smooth curves: the smooth piece-wise cubic Bezier defined by CGM's Polybezier element.  
l Cell Array and Tile Array allow PNG, and JPEG images to be integrated with the vector drawing.  
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Most of the line and fill attributes of CGM are included but only as INDIVIDUAL attributes. The bundled 
attribute functionality of CGM is omitted. Thus, WebCGM diagrams consider properties such as linestyle, 
color, fill types etc as content rather than styling. 
The full set of CGM colour models is provided including sRGB and sRGB-alpha. International text is defined 
by selecting either Unicode UTF-8 or UTF-16. 
Probably the most widely used Viewer is the Micrografx free ActiveCGM plug-in. SDI has also released a 
CGM Plug-in while Tech Illustrator has a TI/WebCGM Hotspot Plug-in module to author hotspots for 
exporting to CGMs. There is good industrial support for WebCGM and it is widely used in the CAD and 
aerospace industries. A major interoperabilty demonstration took place at XML Open in Granada in May 
1999. 
A good source of further information on CGM is CGM Open [12], an organisation dedicated to open and 
interoperable standards for the exchange of graphical information. The W3C Web site is also a valuable 
source of news and reference information. 

6.6 An Example 
CGM has a number of different encodings. The most verbose is the clear text encoding which is primarily 
designed for debugging. The UK Flag in the Clear Text Encoding would be something like: 

BEGMF 'UK Flag Clear Text Encoded'; Begin Metafile 
MFVERSION 1; Defines the Version of CGM, 1 is the smallest 
MFDESC 'RAL GKS 1.11 Cray/COS 88/ 6/17'; Drawn by GKS using a CRAY 
VDCTYPE REAL; Real values will be used to define the picture 
INTEGERPREC -32768, 32767 Range for integers 
REALPREC -8191.0, 8191.0, 8 A default exponent of 8 
COLRPREC 255; Colour values in the range 0 to 255 
MFELEMLIST 'DRAWINGPLUS'; Defines the set of elements that may appear in the Metafile 
BEGPIC 'United Kingdom Flag';Begin Picture 
VDCEXT (0.0,0.2) (1.0,0.8);Min and Max of Coordinates 
COLRMODE DIRECT; Colour Specified Directly 
BEGPICBODY;Start of Drawing 
CLIPRECT (0.0,0.2) (1.0,0.8); Anything drawn outside this area will not appear 
INTSTYLE SOLID; Area is filled with a solid colour 
FILLCOLR 255 255 255; Fill White 
POLYGON (0.0,0.2) (0.0,0.8) (1.0,0.8) (1.0,0.2) (0.0,0.2); Fill whole area white 
FILLCOLR 255 0 0; Now fill in Red 
POLYGON (0.45,0.2) (0.45,0.8) (0.55,0.8) (0.55,0.2) (0.45,0.2); 
POLYGON (0.0,0.45) (1.0,0.45) (1.0,0.55) (0.0,0.55) (0.0,0.45); 
POLYGON (0.0,0.755) (0.0,0.8) (0.375,0.575) (0.3,0.575) (0.0,0.755); 
POLYGON (0.625,0.425) (0.7,0.425) (1.0,0.245) (1.0,0.2) (0.625,0.425); 
POLYGON (0.5750,0.59) (0.575,0.575) (0.625,0.575) (1.0,0.8) (0.925,0.8) 
(0.575,0.59); 
POLYGON (0.0,0.2) (0.075,0.2) (0.425,0.41) (0.425,0.425) (0.375,0.425) 
(0.0,0.2); 
FILLCOLR 0 0 255; Blue 
POLYGON (0.1,0.8) (0.425,0.8) (0.425,0.605) (0.1,0.8); 
POLYGON (0.0,0.74) (0.0,0.575) (0.275,0.575) (0.0,0.74); 
POLYGON (0.575,0.8) (0.9,0.8) (0.575,0.605) (0.575,0.8); 
POLYGON (0.725,0.575) (1.0,0.74) (1.0,0.575) (0.725,0.575); 
POLYGON (0.0,0.425) (0.275,0.425) (0.0,0.26) (0.0,0.425); 
POLYGON (0.1,0.2) (0.425,0.2) (0.425,0.395) (0.1,0.2); 
POLYGON (0.725,0.425) (1.0,0.425) (1.0,0.26) (0.725,0.425); 
POLYGON (0.575,0.2) (0.575,0.395) (0.9,0.2) (0.575,0.2); 
ENDPIC; 
ENDMF; 
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The CGM is more verbose than it might be in that each area is filled independently and no use is made of 
completely covering one area by another. Figure 6.2 shows the result at various sizes to illustrate that this is 
not a pixel description but one that be scaled to any size without loss of detail. As written this is around 1330 
bytes in size but we have included a number of defaults that could be removed and there are quite a few 
superfluous zero characters. Removing these would bring the size down to about 1000 bytes. If it had been 
expressed in integers that would save another 100 bytes. The Character Encoding of CGM uses one or two 
bytes to represent the command and packs up the data values to 1, 2 or 3 bytes. This would bring the size of 
the flag definition down to about 470 bytes. Thus the CGM file even when it is compressed is likely to be 
larger than the small pixel image. However if the GIF or PNG image was made the same size as the largest 
CGM image it would be significantly larger. 

Figure 6.2: CGM Example 
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7. JPEG: Joint Photographic Experts Group 

l 7.1 Introduction  
l 7.2 Structure  
l 7.3 JPEG 2000  

7.1 Introduction 
JPEG is an ISO Standard dating back to 1993. It was designed for the transmission of continuous-tone still 
images (both greyscale and colour) efficiently. High compression ratios while retaining image fidelity was the 
aim. A particular feature of JPEG is that users can trade quality against compression ratio. That implies that 
some loss of information is allowed if very high compression ratios are required. This is the main distinction 
between JPEG and the 2D image formats discussed so far. 
Like GIF, it uses smart algorithms to achieve the compression and almost all of these are subject to patents 
owned by IBM, AT&T, Mitsibushi and others. JPEG is really a set of 29 different coding methods. Most 
implementations only implement a subset of the possibilities. The simplest is called the baseline sequential 
mode and this is free of the patents listed above. It has a sample precision of 8 bits (no better than PNG) and 
uses a Huffman encoding scheme. This is an earlier encoding scheme similar to LZW in that it uses a Code 
table. Huffman encoding finds the most frequently used sequences and allocates them to early positions in 
the Code Table (and they can therefore be defined in a small number of bits). The downside of this approach 
is that the whole image or the part being compressed needs to be analysed before the compression takes 
place. There is also the need to transmit the Code Table unlike LZW.  

7.2 Structure 
For baseline sequential JPEGs, the process is as follows: 

l Divide the image into 8 by 8 pixel blocks and process each individually  
l The block of data is transformed via a Forward Discrete Cosine Transform (FDCT)  
l The result of the FDCT is put through a Quantizer that reduces the precision  
l The image is then compressed using run-length, Huffman, or arithmetic encoding  

Some mathematical transformations exist that transform a set of values from one system of measurement to 
another where data in the new system is easier to compress. The PNG filters are transformations of that 
type. FDCT is mathematically complicated. The aim is to take cosine wave forms with different frequencies 
and determine how much of each frequency pattern exists in the pixel block. In the simplest example, if all 
the data values are the same, the FDCT transforms the 64 values into a single data value. For a smoothly 
changing image, the number of data values in the transformed matrix that are non-zero may be of the order 
of 6. This is how JPEG achieves its compression. The drawback is that the inverse transformation does not 
result in the same image. Variations are small and similar to what you would get if you performed an inverse 
cosine. The reason for choosing 8 by 8 blocks was that the aim was to implement the algorithm in the 
hardware of devices and that was the limit of the VLSI possible at the time. 
The 8 by 8 matrix after the FDCT contains the low-frequency terms in the lower left of the matrix and the high 
frequency terms in the upper right. The major characteristics of the image come from the low-frequency 
terms and it is possible that the high frequency terms are just errors or noise in the original image. 
Quantization reduces the accuracy of the high frequency terms and thus reduces the amount of information 
that needs to be transmitted. Quanization can cause errors in the image after transmission and restoration of 
the order of 2 or 3% which in a photograph are probably not seen by the average viewer. The quantization 
table that indicates the reduction in precision either has to be sent with the image or the encoder and 
decoder agree on always using the same quantization table. 
Coding the 8 by 8 result of quantization first linearizes the 64 entries but this is not done by row. Instead the 
values are taken zigzagging backwards and forwards across the array at 45 degrees. This is done because 
of the relative positioning of the important terms in the transformed and quantized data. The 64 values are 
then run-length encoded and Huffman or arithmetic encoded. 
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JPEG really does not use any great sophistication in the compression. The high compression ratios are 
achieved by the FDCT picking out the major features from the noise and the quantizer reducing the accuracy 
of the less important values. The result is an image that is very similar to the original but not the same. If the 
main information in the image was something that might be mistaken for noise, it could be lost completely. 
For example, hard edges in an image are almost certainly going to appear fuzzy after the JPEG encoding 
and decoding. 
Attempting to minimize the size of the JPEG file by a high level of compression can result in rather poor 
images as can be seen in Figure 7.1. 

 
Figure 7.1: Highly Compressed JPEG 

JPEG is widely used for photographs of real world scenes on the Web and will continue to be so used in the 
future. However, the functionality available with PNG does make it a viable competitor to JPEG for some 
types of photographic images and it does have the merit that it is lossless. 

7.3 JPEG 2000 
A new version of JPEG has just been completed called JPEG 2000. JPEG 2000 aims to provide a new 
image coding system using state of the art compression techniques, based on the use of wavelets. It is 
ambitiously aimed at consumer electronic devices like digital cameras and mobile phones right through to 
pre-press and medical imaging. It reached Draft International status in 2000 and the hope is to get a full 
International Standard in 2001. 
The new compression scheme, Wavelet Compression, is based on wavelets which are widely used in 
computer graphics and other areas. The technique has the property that it transforms the information into a 
set of terms where the first contains the main information and each subsequent term enhances the 
information already described. It has its origins in seismic analysis. It is ideal for the type of transmission 
where the main characteristics of the whole image are transmitted followed by successive refinements. It 
thus has a similar effect as interlacing but in this case it is a fundamental part of the image transformation. 
Thus a low resolution image could be transmitted and the user, if in need of higher resolution, would only 
need to receive the next wavelet and so on. 
The aim will be to define some standard wavelets for transforming all images so that the wavelet definitions 
themselves do not have to be sent and could even be built into the hardware of consumer electronics. 
JPEG 2000 also allows the user to add encrypted copyright information to a JPEG file. There is support for 
better colour management similar to PNG 
PNG still has advantages over JPEG 2000 in some areas. For example, JPEG 2000 has no support for 
transparency, which is a big liability on the Web. It is also a lossy image format. 
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Appendix A 

References 
There are some useful Web sites and books relevant to data compression and image formats: 

1. Graphics File Formats, Wayne Brown and Barry Shepherd, 
Prentice-Hall, 1995  

2. www.wapforum.org/what/technical/SPEC-WAESpec-19990524.pdf  
WBMP Specification, May 1999  

3. http://www.w3.org/Graphics/GIF/spec-gif89a.txt 
GIF89a Specification, 1989.  

4. http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt 
GIF87a Specification, 1987.  

5. http://www.w3.org/TR/REC-png.pdf 
PNG Specification, 1996.  

6. http://www.w3.org/Graphics/WebCGM/, WEB CGM Profile, 1999.  
7. http://browserwatch.internet.com/plug-in.html, Plug-In List  
8. http://www.unisys.com/unisys/lzw/, UniSys LZW Patent  
9. A Technique for High-Performance Data Compression, Terry A Welch, 

IEEE Computer, Vol 17 No 6, 1984.  
10. The CGM Handbook, Lofton R Henderson and Anne M Mumford, 

Academic Press, 1993  
11. PNG The Definitive Guide, Greg Roelofs, 

O Reilly, 1999  
12. http://www.cgmopen.org 

CGM Open  
13. http://www.ietf.org/rfc/rfc1951.txt, 

DEFLATE Compressed Data Format Specification version 1.3  
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Appendix B: PC Plug-ins Available 

MIME Type Extensions Plug-in

application/asf .asf Media Player

application/atmosphere .aer Atmosphere

application/epic .pic RapidVue

application/futuresplash .spl, .swf Flash

application/mbedlet .mbd mBED

application/netwriter .nwr NetWriter

application/octet-stream .pan iMove

application/pdf .pdf, .rmf Acrobat

application/postscript .ai, .eps, .ps GoScript

application/toolbook .tbk Neuron

application/truebasic .tra, .trc WebBASIC

application/vnd.fdf .fdf Acrobat

application/windowsmedia .wma Media Player

application/x-calquick .cqk Calendar Quick

application/x-mwf .mwf MapGuide

application/x-pn-realaudio .ram, .rm, 
.rpm

RealPlayer

application/x-shockwave-
flash

.spl, .swf Flash

audio/aiff .aiff Apple Quicktime, Beatnik, Media Player, ViewMovie XT

audio/basic .au Apple Quicktime, Beatnik, Media Player, ViewMovie XT

audio/midi .mid, .midi Apple Quicktime, Beatnik, Crescendo, Koan, Media Player, 
MidiShare, NET TOOB Stream

audio/mp3 .mp3 Crescendo, Koan, Liquid MusicPlayer, Media Player

audio/mpeg .mpe, .mpeg Apple Quicktime, Media Player, NET TOOB Stream

audio/mpeg3 .mp3 Crescendo, Koan, Liquid MusicPlayer, Media Player

audio/mod .mod Beatni, MODPlug

audio/rmf .rmf Beatnik

audio/wav .wav Apple Quicktime, Beatnik, Liquid MusicPlayer, Media Player, 
NET TOOB Stream

audio/x-aiff .aif, .aiff Apple Quicktime, Beatnik, Media Player, ViewMovie XT

audio/x-midi .mid, .midi Apple Quicktime, Beatnik, Crescendo, Koan, Media Player, 
NET TOOB Stream

audio/x-mpeg .mpg, .mpeg Apple Quicktime, Media Player, NET TOOB Stream

audio/x-mod .mod Beatnik

audio/x-rmf .rmf Beatnik

audio/x-wav .wav Apple Quicktime, Beatnik, Liquid MusicPlayer, Media Player, 
NET TOOB Stream
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MIME Type Extensions Plug-in

image/bmp .bmp Innomage, Prizm

image/cals .cal Prizm, Corp. Ed

image/cgm .cgm MetaWeb

image/gif .gif Innomage, Prizm

image/jpeg .jpg, .jpeg Innomage, Prizm, RapidVue

image/kqp .kqp RapidVue

image/pic .pic, .pict Innomage, RapidVue

image/png .png, .ptng Apple Quicktime, Innomage

image/psd .psd Innomage

image/targa .tga Innomage

image/tiff .tif, .tiff Apple Quicktime, Innomage, Prizm, RapidVue

image/x-bmp .bmp Apple Quicktime, Innomage, Prizm, RapidVue

image/x-cals .cal Prizm

image/x-dcx .dcx Prizm

image/x-macpaint .targa Apple Quicktime, Innomage

image/x-pcx .pcx Innomage, Prizm

model/vnd.dwf .dwf WHIP!

video/avi .avi Apple Quicktime, Media Player, NET TOOB Stream

video/flc .flc Apple Quicktime, NET TOOB Stream

video/mpeg .mpe, .mpeg Apple Quicktime, Media Player, NET TOOB Stream

video/quicktime .mov Apple Quicktime, MovieScreamer, NET TOOB Stream, TEC Player

video/vnd.vivo .viv VivoActive PowerPlayer

video/x-mpeg .mpe, .mpeg Apple Quicktime, Media Player, NET TOOB Stream

video/x-pn-realvideo .ram, .rm, .rpm RealPlayer

x-world/x-svr .svr, .vrt, .xvr Superscape e-Visualizer

x-world/x-vrt .svr, .vrt, .xvr Superscape e-Visualizer
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Appendix C: The Unisys LZW Patent 

A data compressor compresses an input stream of data character signals by storing in a string table strings 
of data character signals encountered in the input stream. The compressor searches the input stream to 
determine the longest match to a stored string. Each stored string comprises a prefix string and an extension 
character where the extension character is the last character in the string and the prefix string comprises all 
but the extension character. Each string has a code signal associated therewith and a string is stored in the 
string table by, at least implicitly, storing the code signal for the string, the code signal for the string prefix and 
the extension character. When the longest match between the input data character stream and the stored 
strings is determined, the code signal for the longest match is transmitted as the compressed code signal for 
the encountered string of characters and an extension string is stored in the string table. The prefix of the 
extended string is the longest match and the extension character of the extended string is the next input data 
character signal following the longest match. Searching through the string table and entering extended 
strings therein is effected by a limited search hashing procedure. Decompression is effected by a 
decompressor that receives the compressed code signals and generates a string table similar to that 
constructed by the compressor to effect lookup of received code signals so as to recover the data character 
signals comprising a stored string. The decompressor string table is updated by storing a string having a 
prefix in accordance with a prior received code signal and an extension character in accordance with the first 
character of the currently recovered string.  
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Appendix D: ZLib Compression 

D.1 Compression algorithm (deflate) 
The deflation algorithm used by gzip (also zip and zlib) is a variation of LZ77 (Lempel-Ziv 1977, see 
reference below). It finds duplicated strings in the input data. The second occurrence of a string is replaced 
by a pointer to the previous string, in the form of a pair (distance, length). Distances are limited to 32K bytes, 
and lengths are limited to 258 bytes. When a string does not occur anywhere in the previous 32K bytes, it is 
emitted as a sequence of literal bytes. (In this description, `string' must be taken as an arbitrary sequence of 
bytes, and is not restricted to printable characters.) 
Literals or match lengths are compressed with one Huffman tree, and match distances are compressed with 
another tree. The trees are stored in a compact form at the start of each block. The blocks can have any size 
(except that the compressed data for one block must fit in available memory). A block is terminated when 
deflate() determines that it would be useful to start another block with fresh trees. (This is somewhat similar 
to the behavior of LZW-based _compress_.) 
Duplicated strings are found using a hash table. All input strings of length 3 are inserted in the hash table. A 
hash index is computed for the next 3 bytes. If the hash chain for this index is not empty, all strings in the 
chain are compared with the current input string, and the longest match is selected. 
The hash chains are searched starting with the most recent strings, to favor small distances and thus take 
advantage of the Huffman encoding. The hash chains are singly linked. There are no deletions from the hash 
chains, the algorithm simply discards matches that are too old. 
To avoid a worst-case situation, very long hash chains are arbitrarily truncated at a certain length, 
determined by a runtime option (level parameter of deflateInit). So deflate() does not always find the longest 
possible match but generally finds a match which is long enough. 
deflate() also defers the selection of matches with a lazy evaluation mechanism. After a match of length N 
has been found, deflate() searches for a longer match at the next input byte. If a longer match is found, the 
previous match is truncated to a length of one (thus producing a single literal byte) and the process of lazy 
evaluation begins again. Otherwise, the original match is kept, and the next match search is attempted only 
N steps later. 
The lazy match evaluation is also subject to a runtime parameter. If the current match is long enough, deflate
() reduces the search for a longer match, thus speeding up the whole process. If compression ratio is more 
important than speed, deflate() attempts a complete second search even if the first match is already long 
enough. 
The lazy match evaluation is not performed for the fastest compression modes (level parameter 1 to 3). For 
these fast modes, new strings are inserted in the hash table only when no match was found, or when the 
match is not too long. This degrades the compression ratio but saves time since there are both fewer 
insertions and fewer searches. 
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D.2 Decompression algorithm (inflate) 
D.2.1 Introduction 
The real question is, given a Huffman tree, how to decode fast. The most important realization is that shorter 
codes are much more common than longer codes, so pay attention to decoding the short codes fast, and let 
the long codes take longer to decode. 
inflate() sets up a first level table that covers some number of bits of input less than the length of longest 
code. It gets that many bits from the stream, and looks it up in the table. The table will tell if the next code is 
that many bits or less and how many, and if it is, it will tell the value, else it will point to the next level table for 
which inflate() grabs more bits and tries to decode a longer code. 
How many bits to make the first lookup is a tradeoff between the time it takes to decode and the time it takes 
to build the table. If building the table took no time (and if you had infinite memory), then there would only be 
a first level table to cover all the way to the longest code. However, building the table ends up taking a lot 
longer for more bits since short codes are replicated many times in such a table. What inflate() does is simply 
to make the number of bits in the first table a variable, and set it for the maximum speed. 
inflate() sends new trees relatively often, so it is possibly set for a smaller first level table than an application 
that has only one tree for all the data. For inflate, which has 286 possible codes for the literal/length tree, the 
size of the first table is nine bits. Also the distance trees have 30 possible values, and the size of the first 
table is six bits. Note that for each of those cases, the table ended up one bit longer than the ``average'' code 
length, i.e. the code length of an approximately flat code which would be a little more than eight bits for 286 
symbols and a little less than five bits for 30 symbols. It would be interesting to see if optimizing the first level 
table for other applications gave values within a bit or two of the flat code size. 

D.2.2 More details on the inflate table lookup 
Ok, you want to know what this cleverly obfuscated inflate tree actually looks like. You are correct that it's not 
a Huffman tree. It is simply a lookup table for the first, let's say, nine bits of a Huffman symbol. The symbol 
could be as short as one bit or as long as 15 bits. If a particular symbol is shorter than nine bits, then that 
symbol's translation is duplicated in all those entries that start with that symbol's bits. For example, if the 
symbol is four bits, then it's duplicated 32 times in a nine-bit table. If a symbol is nine bits long, it appears in 
the table once. 
If the symbol is longer than nine bits, then that entry in the table points to another similar table for the 
remaining bits. Again, there are duplicated entries as needed. The idea is that most of the time the symbol 
will be short and there will only be one table look up. (That's whole idea behind data compression in the first 
place.) For the less frequent long symbols, there will be two lookups. If you had a compression method with 
really long symbols, you could have as many levels of lookups as is efficient. For inflate, two is enough. 
So a table entry either points to another table (in which case nine bits in the above example are gobbled), or 
it contains the translation for the symbol and the number of bits to gobble. Then you start again with the next 
ungobbled bit. 
You may wonder: why not just have one lookup table for how ever many bits the longest symbol is? The 
reason is that if you do that, you end up spending more time filling in duplicate symbol entries than you do 
actually decoding. At least for deflate's output that generates new trees every several 10's of kbytes. You can 
imagine that filling in a 2^15 entry table for a 15-bit code would take too long if you're only decoding several 
thousand symbols. At the other extreme, you could make a new table for every bit in the code. In fact, that's 
essentially a Huffman tree. But then you spend two much time traversing the tree while decoding, even for 
short symbols. 
So the number of bits for the first lookup table is a trade of the time to fill out the table vs. the time spent 
looking at the second level and above of the table. 
Here is an example, scaled down: 
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The code being decoded, with 10 symbols, from 1 to 6 bits long: 

A: 0 
B: 10 
C: 1100 
D: 11010 
E: 11011 
F: 11100 
G: 11101 
H: 11110 
I: 111110 
J: 111111 

Let's make the first table three bits long (eight entries): 

000: A,1 
001: A,1 
010: A,1 
011: A,1 
100: B,2 
101: B,2 
110: -> table X (gobble 3 bits) 
111: -> table Y (gobble 3 bits) 

Each entry is what the bits decode to and how many bits that is, i.e. how many bits to gobble. Or the entry 
points to another table, with the number of bits to gobble implicit in the size of the table. 
Table X is two bits long since the longest code starting with 110 is five bits long: 

00: C,1 
01: C,1 
10: D,2 
11: E,2 

Table Y is three bits long since the longest code starting with 111 is six bits long: 

000: F,2 
001: F,2 
010: G,2 
011: G,2 
100: H,2 
101: H,2 
110: I,3 
111: J,3 

So what we have here are three tables with a total of 20 entries that had to be constructed. That's compared 
to 64 entries for a single table. Or compared to 16 entries for a Huffman tree (six two entry tables and one 
four entry table). Assuming that the code ideally represents the probability of the symbols, it takes on the 
average 1.25 lookups per symbol. That's compared to one lookup for the single table, or 1.66 lookups per 
symbol for the Huffman tree. 
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There, I think that gives you a picture of what's going on. For inflate, the meaning of a particular symbol is 
often more than just a letter. It can be a byte (a "literal"), or it can be either a length or a distance which 
indicates a base value and a number of bits to fetch after the code that is added to the base value. Or it 
might be the special end-of-block code. The data structures created in inftrees.c try to encode all that 
information compactly in the tables. 
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