
HTML Primer

© Oxford Brookes University 2003

Contents

l 1. Introduction
¡ 1.1 History
¡ 1.2 XHTML

l 2. Basic Structure
¡ 2.1 Elements and Attributes
¡ 2.2 The HTML Document
¡ 2.3 Headers and Paragraphs
¡ 2.4 Some Global Attributes
¡ 2.5 Adding Emphasis
¡ 2.6 Layout Model
¡ 2.7 Line Breaks
¡ 2.8 Summary

l 3. Lists
¡ 3.1 Ordered and Unordered Lists
¡ 3.2 The List Element
¡ 3.3 Definition Lists

l 4. Linking
¡ 4.1 Anchors as Sources
¡ 4.2 Uniform Resource Locators
¡ 4.3 Fragment Destinations
¡ 4.4 The base Element

l 5. Further Block-level Elements
¡ 5.1 Introduction
¡ 5.2 Preformatted Text
¡ 5.3 Addresses
¡ 5.4 Quotations
¡ 5.5 Rules
¡ 5.6 The Generic div Element

l 6. Further Inline Elements
¡ 6.1 Significant Phrase Elements
¡ 6.2 Mathematics
¡ 6.3 Quotations
¡ 6.4 The Generic span Element

l . Images
¡ 7.1 Introduction
¡ 7.2 The img Element
¡ 7.3 The object Element
¡ 7.4 Image Maps

-- ii --
© Oxford Brookes University 2003

l 8. Tables
¡ 8.1 Introduction
¡ 8.2 Table Structure
¡ 8.3 Column Organisation
¡ 8.4 Cell Organisation

l 9. Forms
¡ 9.1 Introduction
¡ 9.2 Form Processing
¡ 9.3 The input Element
¡ 9.4 Selections
¡ 9.5 Writing Essays
¡ 9.6 Improving Layout
¡ 9.7 The button Element
¡ 9.8 Summary

l 10. The Document Head
¡ 10.1 Introduction
¡ 10.2 The title Element
¡ 10.3 The meta Element
¡ 10.4 Scripting
¡ 10.5 The style Element
¡ 10.6 The link Element
¡ 10.7 The base Element

l 11. Creating HTML
l 12. Frames

Appendices

l A. References
l B. Quick Reference Guide
l C. Deprecated Attributes

-- 1 --
© Oxford Brookes University 2003

1. Introduction

l 1.1 History
l 1.2 XHTML

1.1 History
HTML stands for the Hypertext Markup Language. It was defined by Tim Berners-Lee in 1990 as the
method of marking up pages of information to be looked at by a browser. The Standard Generalized
Markup Language (SGML) had been used widely at CERN for documentation and HTML was a cut
down version of the CERN documentation language. HTML is not a static language and has gone
though a number of iterations over the last 10 years:

l HTML 2.0 was the first real standard definition for core HTML features based upon current
practice in 1994.

l HTML 3.2 was W3C's first Recommendation for HTML and was defined in 1996. HTML 3.2
added tables, applets, text-flow around images, superscripts and subscripts, and was compatible
with HTML 2.0.

l HTML 4.0 was first released as a W3C Recommendation on 18 December 1997.
l HTML 4.01 was released on 24th December 1999 and fixed a number of bugs in the HTML 4.0

specification.
l XHTML 1.0 is a reformulation of HTML 4 in XML and was released on 26 January 2000 (updated

on 1 August 2002)
l XHTML 1.1 is a redefinition of XHTML 1.0 as a set of modules. It became a Recommendation on

31 May 2001. This Recommendation provides a consistent, forward-looking standard cleanly
separated from the deprecated, legacy functionality of HTML 4.01 that was brought forward as
part of XHTML 1.0.

l XHTML Basic was released on 19 December 2000 and is a minimal set of XHTML 1.0
functionality (defined in terms of XHTML modules) supported by a range of user agents including
PDAs and mobile phones.

l XHTML 2.0 will be the next version of HTML. It is currently at Working Draft stage. Latest Draft is
6 May 2003.

In August 2003, XHTML 1.0 (functionality defined in HTML 4.01) is the version of HTML widely
supported by today's browsers. An aim from the early days of the Web was that style and content of
web pages should be kept distinct. This helps to ensure that pages can be displayed on the widest set
of devices and allows them to be used by people with accessibility problems (either physical or due to
their location). In the early days, HTML was used for defining both the style and the content. Today, the
aim is that styling should be provided through a style sheet and that HTML should be responsible for
defining the content. HTML 4.01 includes a number of legacy styling attributes which are deprecated as
such styling should be done using a style sheet. These attributes do not appear in XHTML 1.1. This
Primer will stick to describing the basic features of XHTML1.1 (functionality defined in HTML 4.01) but
ignoring all the deprecated styling attributes of HTML 4.01 and XHTML 1.0.

1.2 XHTML
There is currently a move towards application-specific markup by using XML (Extensible Markup
Language) as the language for defining markup languages. XML derives from SGML. This means that a
reformulation of HTML as an application of XML makes a great deal of sense. The facilities available in
XML and the tools surrounding XML become available. For this to happen, HTML must be written more
strictly than is required in the HTML specification. For example, each start tag must have an end tag. In
consequence, this Primer is described it as though all that a browser supports is XHTML 1.0. The result
is a succinct Primer.

-- 2 --
© Oxford Brookes University 2003

Frames in HTML 4.01 and XHTML 1.0 are not deprecated but, in many applications and environments
can cause problems. In consequence there are actually six different flavours of XHTML 4.01/XHTML
1.0:

l HTML 4.01 comes in three flavours:
¡ Strict: no styling attributes that are deprecated should appear
¡ Transitional: styling attributes may appear
¡ Frameset: frame functionality is also allowed

l XHTML 1.0 comes in the same three flavours:
¡ Strict: no styling attributes that are deprecated should appear
¡ Transitional: styling attributes may appear
¡ Frameset: frame functionality is also allowed

-- 3 --
© Oxford Brookes University 2003

2. Basic Structure

l 2.1 Elements and Attributes
l 2.2 Basic Structure
l 2.3 Headers and Paragraphs
l 2.4 Some Global Attributes
l 2.5 Adding Emphasis
l 2.6 Layout Model
l 2.7 Summary

2.1 Elements and Attributes
Information in HTML is marked up by adding to the information markup that describes its structure.
Marked up information consists of a set of elements that have the general form:

<xyz>Some content</xyz>

The terminology used is that this defines an xyz element. The start tag for the element is <xyz> and the
end tag is </xyz>. The end tag looks very similar to the start tag except for the addition of the / before
the name of the element. The content of the element is any text to be marked-up and can contain other
elements. So, for example, this is also allowed:

<xyz>Some <abc>more</abc>content<def>added</def></xyz>

The tags must be correctly nested. This would be illegal:

<xyz>Some <abc>more content<def>added</abc></def></xyz>

Either the def element must be completely inside the abc element or completely outside it.
Elements may have attributes and these form part of the start tag:

<xyz attr1="sometext" attr2='somemoretext'>Some content</xyz>

Attributes consist of the attribute name followed by the equal sign and a value which is a string of text
inside one of two types of quotation marks (double quotes: ASCII decimal 34; single quotation marks:
ASCII decimal 39). Two types are allowed in case the attribute's value contains quotation marks. The
start and end quotation marks must either both be single or both be double quotes.
A shorthand is provided for element's that contain no content. For example:

<xyz attr1="sometext" attr2='somemoretext'></xyz>

may also be written:

<xyz attr1="sometext" attr2='somemoretext' />

-- 4 --
© Oxford Brookes University 2003

2.2 The HTML Document
A strict XHTML 1.0 document would have the following structure:

<?xml version="1.0" encoding="iso-8859-1" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
. . .
</head>
<body>
. . .
</body>
</html>

The document starts by indicating that it is XML and follows with a document type declaration that says
what type of document this is. As we are going to be very strict in what we write, we can tell the browser
this and it may help it to run more efficiently. After this comes the complete document which is an html
element. It consists of two elements, the head element and the body element. The first contains
elements that define meta information about the document while the second gives the content of the
document. Most of this Primer will concentrate on defining what can be in the body of the document.
Treat the first two lines as text that you have to start the document with. About the simplest document
that we can have is:

<?xml version="1.0" encoding="iso-8859-1" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>My First Document</title>
</head>
<body>
<p>My first document</p>
</body>
</html>

The head consists of a single title element and the body consists of a single p for paragraph element.
Your browser is likely to display the title as part of its decoration around the document. The document
displayed will be the paragraph My first document displayed something like:

My first document

We have added a background to whatever our browser has produced for this page just so that the
results of the markup are differentiated from the text in the Primer. We will start by looking at the
elements that can be used in the body of the document and come back to discuss the head later. From
now on you can assume that the document has the structure given above and all we are discussing are
the elements that make up the contents of the body element.
The HTML document will normally be stored in a file. It is usual for that file to have an extension .htm
or .html.
If we were going to be less strict and define the document as an HTML 4.01 document that allows
styling attributes, the first two lines would be:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html lang="en">

-- 5 --
© Oxford Brookes University 2003

2.3 Headers and Paragraphs

h1 h2 h3 h4 h5 h6 p

We have already introduced the paragraph element above. HTML allows you to define 6 levels of
headings with h1 being the most important and h6 the least important. So for example you could have:

<h1>1. My Book</h1>
<h2>1.1 The First Section in My Book</h2>
<h3>1.1.1 The First Sub-Section in my book</h3>
<h4>1.1.1.1 The First sub-sub-section</h4>
<p>This is the very first paragraph in my major work which tells in
great detail
all the things that I have ever done.
Sit back and enjoy it!<p>
<h4>1.1.1.2 The second sub-sub-section</h4>
<p>Which does not add a great deal to the first section which
sets the scene quite well.</p>
<h3>1.1.2 The Second Sub-Section in my book</h3>
<p>And so on. . .</p>

A browser might display this as follows:

1. My Book

1.1 The First Section in My Book

1.1.1 The First Sub-Section in my book
1.1.1.1 The First sub-sub-section
This is the very first paragraph in my major work which tells in great detail all the things that I have ever
done. Sit back and enjoy it!

1.1.1.2 The second sub-sub-section
Which does not add a great deal to the first section which sets the scene quite well.

1.1.2 The Second Sub-Section in my book
And so on. . .

How the browser chooses to display it will depend on the browser. They are expected to make the h1
elements more prominent than the h2 elements and so on. Users normally do not use a higher number
heading if they have not first used all the lower numbers. It would be regarded as bad practice to use
h1, h2 and then h4 without using h3 but it is not illegal. We have made the h1 and h2elements more
exotic by centring them and making them a different colour. Most browsers are not that adventurous and
just change the font size, style and boldness to differentiate the headings.

2.4 Some Global Attributes

<h1 id= class= style= title= lang= . . . onclick= onmousedown= . . . >

There are some attributes that apply to nearly all elements. They fall into three classes. The first set
identifies and styles the element more precisely, a second set concerns the language the element is
written in and a third set is concerned with interacting with the element. We will only look at the first set
at the moment.

-- 6 --
© Oxford Brookes University 2003

The first set are:

l id: a unique name is assigned to the element. No other element in the document is allowed to
have the same name. It is used for a variety of purposes including hypertext links, styling,
interaction etc. Those uses will be discussed later or in the CSS Primer.

l class: at least one and possibly more class names are assigned to the element. The primary use
of the class attribute is to specify the styling for elements belonging to one or more classes. The
class attribute is fully described in the CSS Primer.

l style: styling is normally done more globally than on a single element but there are times when
this may be useful. The style attribute is discussed in detail in the CSS Primer.

l title: the attribute adds some information about the element. For elements in the body of the
document, there is no mandatory action or use for the title attribute. However it is usual for
browsers to use the information in some way. For example when the cursor moves over the
element, the browser may display its name as a tool tip.

An example of their use is:

<h1 title="My First Title" id="b123" class="header first topic"> . . .
</h1>

Unless stated otherwise, it can be assumed that any element in the body of the document may have
these attributes and these will be the only attributes unless others are mentioned. Appendix B has the
element names in bold that can have all the global attributes.

2.5 Adding Emphasis

em strong

Within a heading or paragraph, it is likely that some phrase or word may need to be emphasised to add
strength to some point. HTML provides two elements that can occur within the text of other elements to
achieve that goal. The element em emphasises the enclosing text and the element strong emphasises
it even more. It is up to the browser to decide how it will represent the two levels of emphasis. The text
enclosed by the em element might be in italic and the text within the strong element might be bold but
that is up to the browser. All that is hoped for is that the latter is emphasised greater than the former. An
example might be:

<p>This is a book that you really must read. Phone me
tomorrow in the afternoon and tell me what you
think.</p>

This might be rendered as:

This is a book that you really must read. Phone me tomorrow in the afternoon and tell me what
you think.

It might also be rendered as:

This is a book that you really must read. Phone me tomorrow in the afternoon and tell me what you
think.

These are not the only elements that you can use to delineate some parts of an element like paragraph
and headers. We have described these two now because they are frequently used and it allows us now
to discuss a major breakdown of HTML elements into different types.
The important point in terms of the HTML document is that the reader can see that the word must is
emphasised and that the phrase in the afternoon is emphasised even more. In terms of content, that is
all that the reader of the page needs to know and that is all that is conveyed by the elements.

-- 7 --
© Oxford Brookes University 2003

2.6 Layout Model
Some guidance is given within HTML as to how the elements in the document should appear. The
headers should appear on separate lines. If there are two paragraphs, one following another then the
first paragraph should normally be before the second and the end of one and the start of the other
should be obvious. For emphasis, it should be clear that the emphasised words are not separate
paragraphs but emphasised words within the paragraph.
In HTML, this is achieved by telling the browser what type of element each one is. They fall into two
major classes:

l inline:elements that just contain text or other inline elements. The elements em and strong are
inline elements

l block-level: elements that are more significant, can define their own space and can contain
inline elements. The elements p and h1 etc are examples of block-level elements. There are
some block-level elements that are more like containers than individual block-level elements.
They can contain other block-level elements. In this case the internal structure of the block is
more complex. We will come across many examples of these.

Unless told otherwise, the browser is expected to present the two types differently. Block-level elements
are expected to start on a newline while inline elements do not. When we get round to discuss styling,
things get a bit more complicated but while we are just looking at HTML, this is sufficient in describing
how the browser is expected to present the elements to the reader. The complications start to appear
when there are block-level elements enclosing block-level elements. In some sense we already have
that as the body element is a block-level element and we have shown that other block-level elements
can be contained within it.
There are some elements that are used to define how other elements should appear. These are not
block-level elements themselves and so fall outside the layout model. There are also elements that can
really appear anywhere (script elements are a good example) but apply globally. Their appearance at a
particular point in the document just to aid readability.

2.7 Line Breaks

For block-level elements like paragraphs, the normal pattern is to ignore additional white space
characters like extra spaces and fill each line up before carrying on with the paragraph on the next line.
If there is a need to force a line break within a paragraph, inserting the inline element br will cause this
to happen. For example:

<p>This is a paragraph with a great deal
of text in it to make sure that we have
more than one line in it and here
 is where
we want to force a line break</p>

This will be presented as:

This is a paragraph with a great deal of text in it to make sure that we have more than one line in it and
here
is where we want to force a line break

2.8 Summary
Appendix B gives a Quick Guide to all the elements allowed in our strict version of HTML and for each it
lists their attributes, whether they are inline, block or other and any special conditions that apply. Once
familiar with the elements, this should be useful for jogging your memory on a particular element.
The rest of this Primer will consider the remaining elements in some detail.

-- 8 --
© Oxford Brookes University 2003

3. Lists

l 3.1 Ordered and Unordered Lists
l 3.2 The List Element
l 3.3 Definition Lists

3.1 Ordered and Unordered Lists

ul ol li

Two simple lists that are frequently used in documents are unordered lists, a set of bullet points that
are equally important and ordered lists where the order of reading the list has some importance. HTML
allows you to define both types of lists. The element ul element defines an unordered list and the
element ol defines an ordered list. They both contain a set of list elements. Both use the li element to
define the items in the list. For example:

<p>Here is an unordered list:</p>

A bullet point
Another bullet point
And a third

<p>Here is an ordered list:</p>

First point
Second point
Third point

This would appear something like:

Here is an unordered list:

l A bullet point
l Another bullet point
l And a third

Here is an ordered list:

1. First point
2. Second point
3. Third point

The only element allowed within a ul element or a ol element is a li element. Please note!
In this case, the browser has chosen a certain style of bullet symbol to indicate the individual items and
has numbered the ordered list using the numbers 1, 2, 3 etc. Styling the document allows the user to
specify different bullet symbols and different number representations (a, b, c or i, ii, iii even). That does
not concern us here. We will just use the ones provided by the browser.

-- 9 --
© Oxford Brookes University 2003

3.2 The List Element
Well it all looks pretty straightforward so far. We have a set of list elements each containing text (some
of which could be emphasised) and that is as far as it goes. However, it is a great deal more
complicated than that because the element li is a block-level element. So within an li element it is
possible to have other block-level elements. A very obvious example is to put another list within a list, a
markup that is often required. This works in much the same way for both ul and ol elements so we will
only consider one of them. Let us start with our example above:

<p>Here is an unordered list:</p>

A bullet point
Point about bags and boxes and rings
And a third

Anywhere within the second bullet (or the others) we can add another ordered or unordered list so here
is what happens when we insert a list after the word bags:

<p>Here is an unordered list:</p>

A bullet point
Point about bags

First point
Second point
Third point

and boxes and rings together
And a third

The result is as follows:

Here is an unordered list:

l A bullet point
l Point about bags

1. First point
2. Second point
3. Third point

and boxes and rings together
l And a third

Let us go wild and put lists after the words bags, boxes and rings:

-- 10 --
© Oxford Brookes University 2003

<p>Here is an unordered list:</p>

A bullet point
Point about bags

First bag point
Second bag point
Third bag point

and boxes

First box point
Second box point
Third box point

and rings

A ring point
Another ring point
A third point

together

And a third

This is displayed by my browser as:

Here is an unordered list:

l A bullet point
l Point about bags

1. First bag point
2. Second bag point
3. Third bag point

and boxes
1. First box point
2. Second box point
3. Third box point

and rings
¡ A ring point
¡ Another ring point
¡ A third point

together
l And a third

We could go on playing this game with lists inside lists inside lists. Note that the browser has chosen a
different bullet symbol for the inner list and has been kind enough to indent each sub-list to make it more
readable. When we do our own styling, we can provide even more control but that is sufficient for now.
However we need to show a common error that you must not do:

-- 11 --
© Oxford Brookes University 2003

<p>The main points to be covered are:</p>

Lists

Ordered Lists
Unordered Lists

Headers

This looks alright and most likely the browser will accept it but it is illegal. Here the inner unordered list
appears as an element inside the outer unordered list at the same level as the li elements and that is
not allowed. It is only the li element that can have other block-level elements within it. What should be
written in this case is:

<p>The main points to be covered are:</p>

Lists

Ordered Lists
Unordered Lists

Headers

We have seen that we can add lists within lists but the li element can contain any block-level element so
paragraphs and headers can also appear as part of the list element:

<p>The main points to be covered are:</p>

<h4>Lists</h4>
<p>Ordered Lists</p>
<p>Unordered Lists</p>

Headers

This will be displayed as:

The main points to be covered are:

l Lists
Ordered Lists
Unordered Lists

l Headers

-- 12 --
© Oxford Brookes University 2003

3.3 Definition Lists

dl dt dd

The third type of list available in HTML is a definition list which consists of a dl element containing pairs
of dt and dd elements. The dt element defines the term to be defined and the dd element gives the
definition. For example:

<p>The following definitions apply:</p>
<dl>
<dt>Unordered List</dt>
<dd>List in any order that has a bullet in front of it</dd>
<dt>Ordered List</dt>
<dd>List in a precise order that are numbered</dd>
</dl>

The format for the definition list is again up to the browser. the browser might display it as:

The following definitions apply:

Unordered List
List in any order that has a bullet in front of it

Ordered List
List in a precise order that are numbered

HTML does not put any constraints on the positions of dt and dd elements within the dl element so that
the user can define terms without giving a definition and vice versa. This can sometimes be useful when
composing a document but in its final form it is sensible to have pairs of elements with each term
followed by its definition. A dt element may be followed by several dd elements when there are several
definitions that apply.
The dt element acts rather like a header element and should just contain text possibly with some inline
elements to give emphasis etc. On the other hand the dd element is very much like the li element and
can contain any mixture of block-level and inline elements allowed in the body of the document.

-- 13 --
© Oxford Brookes University 2003

4. Linking

l 4.1 Anchors as Sources
l 4.2 Uniform Resource Locators
l 4.3 Fragment Destinations
l 4.4 The base Element

4.1 Anchors as Sources

<h1 id= >

The success of the Web has come about because it allows documents on the web to link to other
documents or even to parts of the current document. The a element, short for anchor, is the element
that achieves that in HTML. It is mainly used to define the source of the link. An element within a
document is defined as the destination of the link by the id attribute. For example:

<p>More information will be found on
the W3C site.
Please visit it.</p>

This will be displayed something like:

More information will be found on the W3C site. Please visit it.

Here the anchor element defines the source of the anchor by the href attribute. Such an anchor is
displayed by most browsers with some indication that the inline text that is the content of the element is
emphasised in some way. In the example above, the text is underlined, and in a different colour. Some
browsers will show the source element differently depending on whether the link has been traversed
before or not. Clicking on the link will cause the page with name intro.htm in the directory fred on the
W3C site to be opened and positioned so the element with its id attribute set to mydestination is
visible. If this is in the middle of the document, the document will be scrolled to a position where this
element is visible, usually at the top of the screen. The browsers usually default to the current web page
being replaced by the one referenced in the anchor element.

4.2 Uniform Resource Locators
The href attribute must be a Uniform Resource Locator although this can be relative or absolute.
Given that the source document is http://www.w3.org/fred/index.htm, some examples of URLs are:

http://www.w3.org/fred/intro.htm#mydestination
A full URL that defines the protocol for communicating with the server (http), the name of the server
(www.w3.org), the name of the resource on that server (fred/intro.htm) and the element within the
resource (the one identified by mydestination).

http://www.w3.org/fred/intro.htm
As above, but the link is to the whole resource and it will normally be displayed with the start of the
page visible

http://www.w3.org/fred/
Defines the default main document in the file fred. It is up to the server to define what file it returns.

#mydest
A relative address. It defines the element identified by the id attribute with value mydest in the same
file as the source anchor. In this case it expands to http://www.w3.org/fred/index.htm#mydest.

-- 14 --
© Oxford Brookes University 2003

intro.htm
A relative address. It defines the file intro.htm in the same directory as the file containing the source
anchor. In this case it expands to http://www.w3.org/fred/intro.htm.

./intro.htm
A relative address. It defines the file intro.htm in the same directory as the file containing the source
anchor. The dot notation moves you up a directory. In this case it expands to
http://www.w3.org/fred/intro.htm.

../intro.htm
A relative address. It defines the file intro.htm in the directory above the file containing the source
anchor. In this case it expands to http://www.w3.org/intro.htm.

../another/intro.htm
A relative address. It moves up two levels in the hierarchy and then the sub-directory another. In this
case it expands to http://www.w3.org/another/intro.htm.

4.3 Fragment Destinations
If the destination of a link is part of a document, it is defined by the id attribute. For example:

<p>More information will be found in
Section 3.
Please visit it.</p>
. . .
<h1 id="sec3">3. Section Three of Document<h1>

The id attribute must be unique within the document.

4.4 The base Element

< base href= />

The base element appears in the head of the document and there should be only one of them. It has a
single attribute, href that defines the base to be used for all relative URLs in the document. In Section
4.2, the base for the examples was http://www.w3.org/fred/index.htm. If there was a base element in the
document, the value specified by the href attribute would be used in place of this. The base element is
mainly used when the same document can be retrieved from different places. The document may have
arrived from one destination but the author would like all the references in the document to be made as
though it came from a different origin.

-- 15 --
© Oxford Brookes University 2003

5. Further Block-level Elements

l 5.1 Introduction
l 5.2 Preformatted Text
l 5.3 Addresses
l 5.4 Quotations
l 5.5 Rules

5.1 Introduction

pre address blockquote hr

HTML identifies three types of paragraph for special treatment. They are:

l Preformatted text: there are many instances where the precise layout of a piece of text has
been defined by spaces and newlines and needs to be retained.

l Addresses: documents normally have an author and this element is intended to convey the
relevant information in order to contact that person.

l Quotations: borrowed material should have a link to the owner. This element is designed for that
purpose.

A fourth element , the hard rule could either be regarded as styling or the null element. It is also
described in this Section.

5.2 Preformatted Text

<pre>

The ability to output preformatted text is needed in HTML because the usual behaviour is to throw
unnecessary whitespace away. For example:

<p>
 Cascading
 Style
 Sheets from the
 World
 Wide
 Web
 Consortium
</p>

will be displayed as:

Cascading Style Sheets from the World Wide Web Consortium

This loses all the flavour of cascading that was in the original layout. Replacing p by pre as the element
produces something like:

-- 16 --
© Oxford Brookes University 2003

 Cascading
 Style
 Sheets from the
 World
 Wide
 Web
 Consortium

The browser is expected to take account of all the whitespace and render it correctly. To help the layout
of spacing to be just right, the browser is asked to use a fixed-pitch or monospaced font as has been
done here. The usual method of presenting paragraphs is to fill up each line and then wrap on to the
next. For preformatted text, if the line is long it should be left that way. The user will then have to scroll
across to see it. One problem with preformatted text is the positioning of tabs. as no guidance is given
by HTML, browsers are likely to make different decisions on what a tab means. In consequence, it is
recommended not to use tabs in preformatted text.
Because preformatted text is trying to get the spacing just right, some of the inline elements are
disallowed. In particular, sup, sub, object, img are not allowed to be used within a preformatted
paragraph

5.3 Addresses

<address>

It is surprising that the address element has survived the various revisions of HTML. It has all the same
characteristics as the p element, and has no additional attributes. In consequence, it could easily be
achieved by having normal paragraphs with a class address. Browsers tend to render the element
using italic script. For example:

<address> Bob Hopgood

Oxford Brookes University

bhopgood@brookes.ac.uk

</address>

This would be rendered as:

Bob Hopgood
Oxford Brookes University
bhopgood@brookes.ac.uk
Note that the element is practically useless without forcing the line breaks by using the br element.

5.4 Quotations

<blockquote cite= >

Copyright is an important issue particularly on the Web where borrowing material is relatively easy. As
the Web allows every resource to be uniquely identified, it is appropriate to define a block-level element
that provides the additional attribute to point to the location from where the quotation was taken. For
example:

-- 17 --
© Oxford Brookes University 2003

<p>The role of W3C is as follows:</p>
<blockquote cite="http://www.w3.org">
<p>The World Wide Web Consortium (W3C)
develops interoperable technologies
(specifications, guidelines, software, and tools)
to lead the Web to its full potential as a forum for
information, commerce, communication, and collective understanding.</p>
</blockquote>

This would be displayed as:

The role of W3C is as follows:

The World Wide Web Consortium (W3C) develops interoperable technologies
(specifications, guidelines, software, and tools) to lead the Web to its full potential as a
forum for information, commerce, communication, and collective understanding.

Note that the browser has indented the text and changed the colour of the text as well. Unfortunately, it
has not provided any mechanism for seeing the citation apart from looking at the source code.

5.5 Rules

<hr />

The hard rule element is probably more a styling rule than an information content one although it could
be used to delineate major sections in a document. It has no additional parameters and is used as
follows:

<p>My first paragraph</p>
<hr />
<p>My second paragraph</p>

This would be presented as:

My first paragraph

My second paragraph

The rule can be styled using CSS.

5.6 The Generic div Element

div

HTML has a generic block-level element called div. It can have any of the inline or block-level elements
within it and it has no additional attributes. Its purpose is to group elements together so that they can act
as a set. The element is quite powerful in terms of styling as it can have a class attribute defined for it
so that a specific div element is styled differently. If the user wished to interact with a part of the
document, enclosing that part with a div element and assigning it a unique id attribute ensures that the
part of the document is located precisely. Until those are discussed in detail, the element does not
appear to provide much additional functionality.

-- 18 --
© Oxford Brookes University 2003

6. Further Inline Elements

l 6.1 Significant Phrase Elements
l 6.2 Mathematics
l 6.3 Quotations
l 6.4 The Generic span Element

6.1 Significant Phrase Elements

cite defn code samp var abbr acronym

HTML provides a number of inline elements that more precisely define the semantic meaning of the
enclosed text. This may be useful for the browser in terms of presentation but could also be of use to a
search engine or a spell checker. They indicate phrases in the document that are not normal textual
information that would appear in a paragraph. Here is an example of most of them:

<p>As <cite>Bob Hopgood</cite> points out, <dfn>HTML stands for
Hypertext Markup Language</dfn>, which is a <abbr title="World Wide Web
Consortium">W3C</abbr> Recommendation used by <acronym title="North
Atlantic Treaty Organisation">NATO</acronym> to markup documents.
Something like <code>class="classified"</code> is used to indicate that
some text like <samp>In Confidence</samp> is added to all the
classified paragraphs. If the <var>class</var> has a value of
<var>unclassified</var>, no additional text is added.</p>

This would be displayed as:

As Bob Hopgood points out, HTML stands for Hypertext Markup Language, which is a W3C
Recommendation used by NATO to markup documents. Something like class="classified" is
used to indicate that some text like In Confidence is added to all the classified paragraphs. If the
class attribute has a value of unclassified no additional text is added.

The meaning of each is:

cite
A citation or reference to another source

dfn
This is the place where this term is defined

code
A fragment of code

samp
Sample output

var
A program argument or variable

abbr
Abbreviation, title attribute is used to define the abbreviation

acronym
The title attribute is used to define the acronym

As can be seen in the example, most browsers make some attempt at rendering the inline elements
differently. Hovering over the acronyms and abbreviations should cause the meaning to be displayed as
a tooltip. The element abbr is rarely used.

-- 19 --
© Oxford Brookes University 2003

6.2 Mathematics
HTML makes no attempt to display mathematics correctly. There is a separate markup language,
MathML, for that purpose. However superscripts and subscripts appear sufficiently often that markup is
provided for them:

<p> x_i = y_i + 2^{a + b²}</p>

This would be displayed as:

xi = yi + 2a + b2

As is shown, inline elements may have inline elements inside them if it makes sense. Broadly speaking
anything that is sensible is allowed.

6.3 Quotations

<q cite= />

As well as the blockquote element, there is also an inline quotation element that allows quotations to
occur within a paragraph. For example:

<p>David said, <q cite="David Duce">I saw Bob and he said <q cite="Bob
Hopgood">SVG is nearly finished</q> so we had better start using
it</q>.</p>

This would be displayed as:

David said, "I saw Bob and he said 'SVG is nearly finished' so we had better start using it".

The browser is supposed to add the quotation marks and be clever enough to use different quotation
marks for the outer and inner quotes. These facilities are currently poorly supported in browsers. For
example. IE6 produces no quotation marks and Opera produces the same quotation marks for both the
inner and outer quotes so this is a risky element to use.

6.4 The Generic span Element

span

HTML has a generic inline element called span. It can have any of the inline elements within it and it
has no additional attributes. Its purpose is to bracket some inline text and elements so that they can act
as a set. The element is quite powerful in terms of styling as it can have a class attribute defined for it
so that a specific span element is styled differently. If the user wished to interact with a part of a block-
level element, enclosing that part with a span element and assigning it a unique id attribute ensures that
the part of the block-level element is located precisely. Until those are discussed in detail, the element
does not appear to provide much additional functionality.

-- 20 --
© Oxford Brookes University 2003

7. Images

l 7.1 Introduction
l 7.2 The img Element
l 7.3 The object Element
l 7.4 Image Maps

7.1 Introduction
Inline images were added to HTML quite early on and provide a mechanism for adding pictorial
information to Web pages. Two elements are provided:

img
The img element was defined early on and is a simple mechanism for adding images. It does not
provide much control in terms of providing alternatives if either the image requested is unavailable or
it is impossible for the viewer to perceive it. The aim is to supersede the img element with the object
element although in August 2003 both were available for use.

object
The object element is similar to the img element but allows alternative representations so it has
wider applicability. It is particularly useful when using specific image types that require additional
functionality in the browser or where an alternative might be preferred due to the type of connection
that the user currently has (a mobile phone, for example).

HTML does not legislate which media types, sometimes called MIME type are supported by the
browser. MIME stands for Multi purpose Internet Mail Extensions. In some cases, the browser can be
enhanced by adding a plug-in provided by a different organisation to support another MIME type. For
example, Scalable Vector Graphics (SVG) pictures are currently supported in IE6 using a plug-ins
provided by Adobe or Corel. If the user has not down loaded the plug-in, the SVG pictures specified
cannot be displayed. If the object element is used to specify the SVG file to be loaded, it could provide
as an alternative either the picture in a different format that most browsers do support or it could display
a message telling the user to download the plug-in. The browser has to work out what type of image is
being provided and in the case of the img element it does that by data sniffing, that is MIME type
detection. When the server sends the file it may send the MIME type with it. The file extension will
normally give a good clue to the contents. If the browser is sufficiently intelligent, it can look at the
contents of the file and determine it that way. So getting the type of file requires quite a bit of work on
the part of the browser and server.
In the case of the object element the browser retrieves the value of the type attribute if provided and
that gives the MIME type. This means that if it does not support the MIME type, it does not need to
download the file. Some of the more usual images are (filename followed in brackets by the image type):

abc.gif (image/gif)
The GIF (Graphics Interchange Format) format is widely used for bit map images that are graphics
art. It is lossless, which means that all the information in the original image is kept. It suffers from
some patent problems on the algorithms used for compression and so is being replaced by the PNG
format

abc.png (image/png)
The PNG (Portable Network Graphics) format is similar to GIF but can handle a wider range of
images with better colour support and can be more efficiently compressed.

abc.jpg abc.jpeg (image/jpeg)
JPEG (Joint Photographic Experts Group) format is widely used for transmitting real world images. It
is a lossy compression which means that it approximates the original image throwing away
superfluous detail.

abc.mpeg abc.mpg (application/mpeg)
The MPEG (Moving Picture Experts Group) format is for transmitting video. It provides high
compression by being lossy and only transmitting the changes from one frame to the next.

-- 21 --
© Oxford Brookes University 2003

abc.cgm (image/cgm)
The CGM (Computer Graphics Metafile) format is designed for transmitting line drawings. It is an ISO
standard and there is a WebCGM profile for use on the Web.

abc.svg (image/svg+xml)
The SVG (Scalable Vector Graphics) format is designed as an XML application providing line drawing
functionality similar to CGM but it also has better text drawing capabilities and special effects
including animation. It is the standard on the web for pictures that are not bit map images.

Other possibilities that might be recognised are text/richtext, text/html, audio/wav, video/avi,
application/pdf, etc. The list is very long.

7.2 The img Element

The inline img element defines an image to be displayed inline. If there is insufficient space on the line
for the image, it will be placed on the next line. Better control of images is available through styling. The
main attributes are:

src
Gives the URL of the file containing the image

alt
An alternative text description of the image. If the reader has the browser set not to display images,
the alt text will be displayed instead. Some browsers provide the option that the text is displayed
when you hover over the image. For viewers listening to the page via a text-to-speech browser, the
alt text is spoken in place of the image. The alt attribute should always be provided.

width, height
These two attributes define the width and height of the image in pixels. If they are not provided, the
browser downloads the image and works out the values for itself. This means that the rest of the page
cannot be composed until the image arrives. Good practice is for these two attributes always to be
provided. If their values are different from the size of the image, the browser will scale the image until
it fits

longdesc
Gives the URL of a file that provides additional information about the image. For complex images
where the designer wants to provide sufficient information for, say, a blind person to get an in depth
description of the image, the longdesc attribute should be provided. When the image has an
associated image map (to be discussed later), this can be used to provide additional information
about the image map's contents.

usemap
For handling client side image maps, to be discussed later.

Here is an example that displays a JPEG image called bobbin.jpg that is 349 pixels wide and 91 pixels
high:

<p>Hanging bobbins like this one:
<img width="349" height="91" alt="a bobbin" src="bobbin.jpg"
longdesc="bobbin.txt" />
were sold at hangings in England as souvenirs.
The actual size is smaller:

and I can make them look silly by changing the aspect ratio.
Here the height has been halved:

and here the height has been doubled and the width halved:
 </p>

-- 22 --
© Oxford Brookes University 2003

This would appear as:

Hanging bobbins like this one: were sold at

hangings in England as souvenirs. The actual size is smaller: and I can
make them look silly by changing the aspect ratio. Here the height has been halved:

 and here the height has been doubled and

the width halved:

The file bobbin.txt might contain:

William Bradbury was murdered near Luton. William Worsley and Levi Welch were both
charged with the crime but Levi Welch turned king's evidence admitting that he had robbed
him but that Worsley had struck the blow that killed him. William Worsley was found guilty
of highway robbery and murder. His death was the last public hanging to take place in
Bedford on 31 March 1868. Bobbins were produced as souvenirs for the men in the crowd
to give to their wives as a memento of the occasion. Being the last public hanging, this
bobbin was produced in a reasonable quantity and so are not as rare as other hanging
bobbins. At auction in good condition they are worth around 150 pounds sterling. In a shop
you might pay a significant mark up on that price.

7.3 The object Element

<object data= type= standby= height= width= >

The object element is designed to replace the img element and to provide facilities for inserting into a
Web page files in a whole variety of formats.
The inline object element defines one of a set of objects to be displayed inline. The main attributes are:

data
Gives the URL of the file containing the image

type
Gives the MIME type for the object to be downloaded. The browser can check this before attempting
a download.

-- 23 --
© Oxford Brookes University 2003

width, height
These two attributes define the width and height of the object in pixels. If they are not provided, the
browser downloads the object and works out the values for itself. Good practice is for these two
attributes always to be provided.

standby
Gives a text message for the browser to display while the object is being downloaded.

Here is the previous example that displays an image called bobbin that is 349 pixels wide and 91 pixels
high. The image is available in JPEG, GIF and PNG formats:

<object width="349" height="91" data="bobbin.jpg" type="image/jpg"
standby="JPEG image downloading">
<object width="349" height="91" data="bobbin.png" type="image/png"
standby="PNG image downloading" />

No image available
</object>

In this case the browser will first attempt to download the JPG object. If this is not possible for any
reason, it will try the PNG object and if that is also not possible, it will try to download the GIF image
using the img element. If all three are not possible, it will display the text No image available. Adding
an img element using a format that is almost certainly going to be available is useful for browsers that
still do not recognise the object element. They will ignore those and just display the GIF image.
At the moment (August 2003), the support for the object element is improving but still not complete in
some browsers. In consequence for most image formats (jpg, png, gif) it is often useful to continue with
the img element.

7.4 Image Maps

< img usemap= />
<map name= >
<area href= alt= shape= coords= />

It is possible to use an image as a mechanism for linking to other pages in the same way that anchors
are used. To achieve this, it is necessary to define the parts of the image that will be activated when a
click is made over them and also the action to take when this happens. For example:

<h3>Robert Cailliau and Murray Maloney</h3>

<img alt="Robert and Murray" width="277" height="127"
src="photorcmm.jpg" usemap="#maprcmm" />

</p>
<map name="maprcmm">
<area href="http://cern.web.cern.ch/CERN/Divisions/ETT/WPE/People/RobertCailliau/"
shape="rect" coords="0, 0, 138, 127" />
<area href="http://www.muzmo.com/Murray/" shape="rect" coords="139, 0, 277, 127" />
</map>

-- 24 --
© Oxford Brookes University 2003

This would appear as:

Robert Cailliau and Murray Maloney

The map element can be anywhere in the file and the attribute name is used by the img element to
indicate which map is being used. The img element has its ismap attribute set to the name of the map
element. To ensure that the inline img element is recognised as an anchor, it is enclosed by an a
element where the href attribute is not used and can be set to anything. It should be included as some
browsers check that it is present.
Within the map element is a set of area elements each of which define part of the image as a clickable
region and the destination of the link when a user clicks on that part of the image. In the example, there
are two areas. The coords attribute defines the part of the image that is active and the shape of the
area is defined by the shape attribute. The example has two rectangular areas and the four coordinates
define positions on the image in pixels. The four coordinates define minx miny maxx maxy where the
origin is the top left corner of the image and y increases in the downwards direction. In the example, the
two areas are the left side of the photograph and the right side of the photograph. Clicking on one or
other will cause a link to the appropriate home page of Robert Cailliau at CERN or Murray Maloney at
his company, Muzmo Communications. The possible shapes are:

default
Defines the whole area

rect
A rectangular area where the coords attribute consists of minx miny maxx maxy

circle
A circular area where the coords attribute consists of centrex centrey radius

poly
A polygonal area where the coords attribute consists of x1 y1 x2 y2 x3 y3 . . .

There are a number of editors on the market that aid in the production of image maps. In most cases it
is possible to achieve the same effect either by careful styling or by the use of Scalable Vector Graphics
possible with associated images. This is probably the least useful method of associating links with
images.

-- 25 --
© Oxford Brookes University 2003

8. Tables

l 8.1 Introduction
l 8.2 Table Structure
l 8.3 Column Organisation
l 8.4 Cell Organisation

8.1 Introduction
HTML provides good support for tables. The table is divided into three main parts, a header, a body and
a footer. There is also an optional caption that can be added to the table. Inside the three main parts, a
table is divided into rows each having a number of columns. As with most word processing systems it is
possible to give groups of columns special features and to merge two or more columns together or two
or more rows together. The table is basically made up of cells and the content of a cell may be any set
of block-level elements rather like the li element. So it is possible to put another table inside a single
cell. In consequence, almost any table that is required can be achieved. CSS provides good control of
the styling of individual cells and the table decoration. We shall not consider that further here.

8.2 Table structure

<table summary= width= >
<caption>. . .</caption>
<colgroup align= span= width= />
<col align= span= width= />

<thead>
. . .
</thead>
<tfoot>
. . .
</tfoot>

<tbody>
. . .
</tbody>

</table>

The table head and foot are very similar to the table body. The main difference is that the browser is
supposed to output the table head and table foot on every page of the output if it is a very long table.
Most of the browsers do not appear to have implemented this. Multiple table bodies are allowed and this
can be useful if different parts of the table are to be styled differently. Here is a very simple example:

-- 26 --
© Oxford Brookes University 2003

<table title="Membership of W3C July 2001" summary="5 column table with
header row and first column the type of membership. Total in the final
column and bottom row" width="90%">
<caption>W3C Membership</caption>
<thead>
<tr>
<th>Type</th><th>Americas</th><th>Europe</th><th>Pacific</th><th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<th>Full</th><td>62</td><td>29</td><td>17</td><td>108</td>
</tr>
<tr>
<th>Affiliate</th><td>240</td><td>123</td><td>47</td><td>410</td>
</tr>
<tr>
<th>Total</th><td>302</td><td>152</td><td>64</td><th>518</th>
</tr>
</tbody>
</table>

This would be displayed something like:

The sections of the table are made up of table rows denoted by the tr element. Each row consists of a
set of entries which can either be td elements (for data) or th elements (for headers). Note that the
header elements can be anywhere. In this case the table has them in the top row and first column and
the overall total. The browser is expected to render the two elements differently. the browser will most
likely make the header data elements (th) bolder than the normal data elements (td).
The table has been defined as having a width of 90% of the width of the page. Any of the usual length
values may be used but it is quite common to specify the width as a fraction of the current window size.
The summary element is aimed at users who for one reason or another will have difficulty seeing the
table in full. They might be blind or have a very small display or have had the table converted to text to
transmit it by voice. The aim is to give some information to make it easier to understand the table. Other
facilities are provided to help the user understand the table structure. Normally the summary would not
be this long.

8.3 Column Organisation
The col and colgroup elements allow the author to define properties for a whole column or group of
columns.
The colgroup element is provided to create structural divisions in the table. For example, the table
above might have immediately after the caption:

<colgroup span="1" width="30%" />
<colgroup span="3" width="10%" />
<colgroup span="1" width="30%" />

W3C Membership
Type Americas Europe Pacific Total

Full 62 29 17 108

Affiliate 240 123 47 410

Total 302 152 64 518

-- 27 --
© Oxford Brookes University 2003

This would change the table to look like:

The first column, being the headings for each row is put into one group, the three columns giving the
information is a second group while the third group is the one containing the totals. The attribute span
defines the number of columns in the group in each case. In the example, the widths have been made
difference to demonstrate this. Styling can be applied differently to each of the groups.
The col element shares attributes between several columns. For example:

<colgroup span="3" align="right">
<col width="30%">
<col span="2" width="10%">
</colgroup>
<colgroup span="2" width="20%">

The colgroup element has defined that the first three columns form a group, not a very sensible
grouping, and that these should be aligned to the right. The attribute span defines the number of
columns in the group. Within that group of columns, the two col elements define the first column as
having a width of 30% and the next two have a width of 10%. For the col element, the attribute span
defines the number of columns that the element applies to. Finally, the second colgroup element
specifies the group of two columns having a width of 20%.

The col element can be used by itself and appear without being surrounded by a colgroup element.
The colgroup element does not add any additional functionality as it has the same attributes as the col
element. It does make the description simpler and brings out any inherent structure to the table.

8.4 Cell Organisation

<tr>
<th rowspan= colspan= align=>
<td rowspan= colspan= align=>
</tr>

Frequently in the organisation of more complex tables, it is useful to be able to have a cell in the table
that spans more than one column or more than one row. The attribute rowspan defines the number of
rows that the cell spans (default is 1) and colspan defines the number of columns that the cell spans.
For example, to have a row in the head of the table to replace the caption, this could be done as follows:

W3C Membership
Type Americas Europe Pacific Total

Full 62 29 17 108

Affiliate 240 123 47 410

Total 302 152 64 518

W3C Membership
Type Americas Europe Pacific Total

Full 62 29 17 108

Affiliate 240 123 47 410

Total 302 152 64 518

-- 28 --
© Oxford Brookes University 2003

<table title="Membership of W3C July 2001" summary="5 ..." width="90%">
<thead>
<tr>
<th colspan="5">W3C Membership</th>
</tr>
<tr>
<th>Type</th><th>Americas</th><th>Europe</th><th>Pacific</th><th>Total</th>
</tr>
</thead>

The original table would then appear as:

To make the first and last titles straddle the first two rows, the table could be changed to:

<table title="Membership of W3C July 2001" summary="5 ..." width="90%">
<thead>
<tr>
<th rowspan="2">Type</th>
<th colspan="3">W3C Membership</th>
<th rowspan="2">Total</th>
</tr>
<tr>
<th>Americas</th><th>Europe</th><th>Pacific</th>
</tr>
</thead>

Clearly some care must be taken in designing this. The first row consists of three cells. The first cell
straddles this row and the next one as does the last. The middle cell straddles three columns. When the
next row is to be defined, the first and last cells have already been defined by the previous row. In the
second row, only the remaining three cells need to be defined. the result is as follows:

W3C Membership

Type Americas Europe Pacific Total

Full 62 29 17 108

Affiliate 240 123 47 410

Total 302 152 64 518

Type W3C Membership Total

Americas Europe Pacific

Full 62 29 17 108

Affiliate 240 123 47 410

Total 302 152 64 518

-- 29 --
© Oxford Brookes University 2003

9. Forms

l 9.1 Introduction
l 9.2 Form Processing
l 9.3 The input Element
l 9.4 Selections
l 9.5 Writing Essays
l 9.6 Improving Layout
l 9.7 The button Element
l 9.8 Summary

9.1 Introduction
Forms in HTML are much like forms in real life. The user must fill in a set of fields on the form and post
it somewhere. For the moment, we will concentrate on filling the form in rather than posting it. For
commercial activities, it is usual for the form to be sent back to the server for processing. However, if the
form is just designed to provide interaction between the user and the Web page, it may be sent to a
script for execution locally.
Forms in real life come up in many shapes and sizes. Many forms provide text fields for you to fill in
(your name and address for example. Some present you with a set of options and ask you to tick all that
apply and some insist that you only tick one of the options. Most of the standard methods of form filling
are provided in HTML. The form element encloses the complete form. The input element handles most
of the fields on the form and the attributes of the element define what type of field it is. A separate
textarea element is provided for those fields on forms where you are allowed to write essays rather than
simple one line answers. The select element handles those scrolling lists where you have to select your
country of origin etc. Within the list, the individual entries are handled by the option element.
So far the form is a set of input fields that are independent. By using other HTML elements such as
headings and tables, the form can be made to look as though it has some structure. To aid accessibility,
the form has its own internal structure. A set of form fields can be grouped together by the fieldset
element and this section can be given its own title using the legend element. Also, individual fields can
have a label associated with them using the label element.
To make even prettier buttons, HTML has added the button element which forms much the same as the
input element when it is defining a button. However the button element can embed any block-level
elements within it including images so it greatly enhances the look of the button but does not really add
much content capability.

9.2 Form Processing

<form method= action= onsubmit= >
<input name= type= value= size= maxlength= checked= src= accesskey= >

Here is a very simple example of a form:

<form method= "post" action = "mailto:bhopgood@brookes.ac.uk">
<p>Please type the mail to send to Bob Hopgood:
<input name="MyMessage" type="text" ></p>
</form>

This would appear something like:

Please type the mail to send to Bob Hopgood:

-- 30 --
© Oxford Brookes University 2003

The input element will be discussed in detail in the next section. The example here just expects the
user to type some information into a box. The form element has two major attributes. The method
attribute indicates the HTTP method to be used in sending the information and the action attribute gives
details of where it will be sent. In the example, the HTTP POST method is specified and the input is to
be sent to the mail address specified. The possible methods are:

get
This is the default action. If a URL is specified as the value of the action, a ? followed by the input is
sent to the server or whatever processing agent is specified.

post
In this case the input is embedded in the form and sent to the processing agent

In the example, if the text input is Hello world followed by a Return, this will cause the form to be
submitted. The content of the form that is emailed is:

MyMessage=Hello+world

If the form element had been:

<form method= "get" action = "http://www.w3.org/">

The URL requested would have been:

http://www.w3.org/?MyMessage=Hello+world

If the form has several input values, the individual inputs will be separated with &. For example:

http://www.w3.org/?MyMessage=Hello+world&MySecondMessage=From+me

It is possible to send the input results to a script associated with the web page by:

<form onsubmit="process()">

In this case the function process can access the result of the input and perform the script based on this
input.
To a large extent, what happens as a result of the input is outside the control of HTML and we will not
discuss it further in this Primer. The aim here is to show the types of input possible and how they can be
used.

-- 31 --
© Oxford Brookes University 2003

9.3 The input Element

<form method= action= onsubmit= >
<input name= type= value= size= maxlength= checked= src= accesskey= >

The overall form of the input element depends on the three attributes name, type and value. The other
attributes are either required for a subset of the devices or the meaning varies dependent on the device:

name
The name attribute gives the name to be added to the input to indicate where it has come from. In
most cases, the input device has an initial value so that if you submit the input without doing anything,
this value will be sent to the destination. The input device has the ability to change the initial value
and this is usually what will be sent.

type
The type attribute defines the type of input. The possible input types are: text, submit, radio,
checkbox, button, reset, password, file, hidden and image. We shall look at these in detail in this
section. If no type value is given, the input type is assumed to be text. In the example in the previous
section, the type attribute could have been omitted.

value
The value attribute gives the initial value for the input from a device in most cases. The only device
that must have an initial value is the radio device.

size
This either gives the width of the input device in pixels or the number of characters allowed.

maxlength
For text and password devices, this defines the maximum size that the input can take in characters.

checked
For radio and checkbox devices, this says whether the button is set initially.

src
For image devices, this points to the image.

accesskey
The accesskey attribute can be used more generally than input but it is particularly useful in the
environment where an operator has a large number of forms to fill in. It associates a key on the
keyboard to the input device and in the case of radio buttons will change the value. For somebody
that has accessibility problems it allows them to quickly focus on a specific device where they wish to
input a value.

text
The text device has already been shown in the previous section but here is a more complete example:

<input name ="MyMessage" type="text" value="Some text" size="40"
maxlength="30" accesskey="Z" />

This would appear something like:

 Some text

-- 32 --
© Oxford Brookes University 2003

The device will appear with a window capable of holding the 40 characters that may be input. If more
than 30 characters are input, the rest are thrown away. The initial text appears in the window. If the user
does not want to use that, this should be deleted before typing is started. Hitting the character Z on the
keyboard should move the focus ready to input text in the text field. This is still poorly supported in
today's browsers. Also, some browsers manage to miscalcluate the width of the text field so that even
when the size is the same as maxlength, the field length is not sufficient to see all the characters. On
some browsers, the window can be made a scrolling one by: specifying the maxlength greater than the
size. IE6 does not do this. To be sure of seeing all the characters typed:

<input name ="MyMessage" type="text" value="Some text:" size="40"
maxlength="10" /></p>

This would appear something like:

Attempting to type after the ten characters displayed will not cause any action.

submit
So far, to input the text, it has been necessary to hit the RETURN key which may not be that intuitive.
The submit type allows a separate device to initiate the submission. For example:

<form method= "post" action = "mailto:bhopgood@brookes.ac.uk">
<p>Please type the mail to send to Bob Hopgood:
<input name="MyMessage" type="text" />
<input type = "submit" name="Mail" value = "Send Mail" /></p>
</form>

This would appear something like:

Please type the mail to send to Bob Hopgood:

Typing abc and hitting the submit button would result in MyMessage=abc&Mail=Send+Mail being
input. As the input is not just the text input but also the contents of the submit button, it is feasible to
have more than one submit button and process the input text dependent on the button pressed.

radio
Radio buttons can be defined by:

<p>Indicate your choice of music:</p>
<p>Jazz: <input type ="radio" name="music" value="jazz"
checked="checked" /></p>
<p>Classical: <input type ="radio" name="music" value="classical"></p>
<p>Folk: <input type ="radio" name="music" value="folk" /></p>

Some text:

Send Mail

-- 33 --
© Oxford Brookes University 2003

This would appear something like:

Indicate your choice of music:

Jazz:

Classical:

Folk:

By giving the three buttons the same name they act as a single device with only one being checked at
any one time. The initial setting of the device is with the value jazz checked.

checkbox
Checkboxes can be defined by:

<p>Indicate all the choices of music you like:</p>
<p>Jazz: <input type = "checkbox" name="music" value="jazz" /></p>
<p>Classical: <input type="checkbox" name="music"
value="classical" /></p>
<p>Folk: <input type="checkbox" name="music" value="folk" /></p>
<input type="submit" name="Choice" value="Choices Made" />

This would appear something like:

Indicate all the choices of music you like:

Jazz:

Classical:

Folk:

If jazz and folk have been set followed by hitting the submit button, the input would be:
music=jazz&music=folk&Choice=Choices+Made

button
Buttons are aimed at providing a method for invoking local scripts. Whereas the submit button causes
the form as a whole to be submitted, the push button causes a script to be launched:

<input type="button" value="Click Me" onclick="processclick()" />

This would appear something like:

It is usual for the value of the click to be the name given to the button.

nmlkji

nmlkj

nmlkj

gfedc

gfedc

gfedc

Choices Made

Click Me

-- 34 --
© Oxford Brookes University 2003

reset
In the original example of text input, the situation could arise that the input provided by the user is wrong
and rather than try and patch it up, the best solution is to start again. This could apply to the other input
devices in the form as well. The reset button goes through the form and resets all the input devices to
their initial values. For example:

<form method= "post" action = "mailto:bhopgood@brookes.ac.uk">
<p>Please type the mail to send to Bob Hopgood:
<input name="MyMessage" type="text" value="Initial text" /></p>
<p><input type = "submit" name="Mail" value = "Send Mail" /></p>
<p><input type = "reset" name="Reset" value = "Reset Text" /></p>
</form>

This would appear something like:

Please type the mail to send to Bob Hopgood:

If the initial text is overwritten and the reset button hit, the initial text will reappear.

password
Sometimes the text to be input is information that you do not wish somebody else to see who is looking
over your shoulder. In this case it would be preferable for the text not to be visible:

<p>Please type the mail to send to Bob Hopgood:
<input name="MyPassword" type="password" value="mypass" /></p>

This would appear something like:

Please type your password:

As the user types, a different character is presented (often a *) so that the input cannot be seen. Even
the initial value is masked in this way.

file
Frequently, the input required is the name of a local file name. In this case it would be useful if the user
could browse his filestore and indicate the file to be sent rather than typing the filename. this is achieved
by:

<p>Input name of picture to be processed:
<input type="file" name="imagefile"
value="C:\Files\test\photo.jpg" /></p>

This would appear something like:

Input name of picture to be processed:

The browser may or may not put the initial file value in the window (IE6 does not and Opera does). What
it puts on the button that allows you to search the filestore is also up to the browser.

Initial text

Send Mail

Reset Text

Browse...

-- 35 --
© Oxford Brookes University 2003

hidden
Sometimes there is a need to send some information to the server that the form designer does not input
from the user to fill in. For example, a form may have been sent already from this user and the current
form being input needs to be associated with that form. This can be achieved as follows:

<input type="hidden" name="from" value="frah" />

Nothing appears on the form but when the form is submitted, one of the input values will be from=frah.

image
Buttons can be defined by:

<p>Please type the mail to send to Bob Hopgood:
<input name="MyMessage" type="text" />
then mail by pressing:
<input type="image" name="Pretty" src="frah.gif" /></p>

This would appear something like:

Please type the mail to send to Bob Hopgood: then mail by pressing:

What gets sent when the form is submitted depends on where the user has hit on the image. It would be
something like: Pretty.x=73amp;Pretty.y=122. It is possible to associate a usemap attribute to the
input element so that different responses could be made dependent on the input values provided.

9.4 Selections

<select name= size= multiple= >
<option value= label= >
<optgroup label= >

A frequent input requirement is to present a set of options to a user and give the user the opportunity to
select one. The two elements select and option provide that facility. For example:

<p>Please make your choice of music:</p>
<select name="music" size="6" multiple="multiple">
<option value = "jazz">Jazz</option>
<option value = "classical">Classical</option>
<option value = "folk">Folk</option>
<option value = "pop">Pop</option>
<option value = "world">World</option>
<option value = "zydeco" selected="selected">Zydeco</option>
<option value = "country">Country</option>
<option value = "fado">Fado</option>
</select>

-- 36 --
© Oxford Brookes University 2003

This would appear something like this:

Please make your choice of music:

The select element is designed to display a menu of options to the user. The name attribute gives the
name for the information to be returned and the size attribute defines the number of options that would
be visible initially. The multiple attribute defines whether one or more choices are allowed to be made.
If the attribute is set, holding the control key down and making a selection allows several selections to
be made. The option elements appear inside the select element and each defines one of the entries on
the menu. If the select attribute is set, that option will be set when the menu is displayed. In this case
zydeco is set. If jazz was also selected, the value returned would be: music=jazz&music=zydeco.
For very long lists, the amount of scrolling that has to be done is excessive. The normal solution to this
is to have a main menu that defines groups of menu items and moving right from a group entry gives
you the sub-group. The optgroup element has been added to provide this additional single level of
structure (the element cannot currently be nested). To define two groups would be provided by:

<p>Please make your choice of music:</p>
<select name="music" size="4" multiple="multiple">
<optgroup label="Old">
<option value = "jazz">Jazz</option>
<option value = "classical">Classical</option>
<option value = "folk">Folk</option>
<option value = "pop">Pop</option>
</optgroup>
<optgroup label="New">
<option value = "world">World</option>
<option value = "zydeco" selected="selected">Zydeco</option>
<option value = "country">Country</option>
<option value = "fado">Fado</option>
</optgroup>
</select>

The initial menu is a 2-item menu displaying Old and New. By selecting one or other and moving right
brings up the sub-menu with the options in the group. The element does not provide any richer input
content but does improve the user interface. It is not implemented in IE6.
If the length of the menu is sufficiently small that the size attribute can be the length of the options, the
display is likely to be as follows (we have limited the options to 6):

Please make your choice of music:

Jazz
Classical
Folk
Pop
World
Zydeco

Jazz
Classical
Folk
Pop
World
Zydeco

-- 37 --
© Oxford Brookes University 2003

9.5 Writing Essays

<textarea name= rows= cols= readonly= />

If a body of text is to be input, the input element does not provide the real estate for a large volume of
text providing just a single line buffer. To provide an area consisting of several lines requires the
textarea element. For example:

<textarea name="para" rows="7" cols="60" ></textarea>

This would appear something like this:

A window containing 7 lines of text, each 60 characters wide is presented to the user and the user can
scroll that window so that input is unlimited. To provide an initial value for the input buffer requires:

<textarea name="para" rows="7" cols="60" readonly="readonly" >
This is the first row of the input buffer
and this is the second line.
</textarea>

This would appear something like this:

By setting the readonly attribute, the initial text cannot be overwritten. If it does not appear, it can be
overwritten.

This is the first row of the input buffer
and this is the second line.

-- 38 --
© Oxford Brookes University 2003

9.6 Improving Layout

<label for= >
<fieldset >
<legend >

Quite a few of the input methods provide the mechanism for inputting the value but do not add any
information concerning that mechanism. In consequence, normal HTML markup has been added to
indicate what the input value represents. The label element specifies labels for input devices that do not
have a label associated with the device. Earlier, for example, a set of radio buttons was defined as:

<p>Indicate your choice of music:</p>
<p>Jazz: <input type ="radio" name="music" value="jazz"
checked="checked" /></p>
<p>Classical: <input type ="radio" name="music" value="classical"></p>
<p>Folk: <input type ="radio" name="music" value="folk" /></p>

Using a label, this could be written as:

<p>Indicate your choice of music:</p>
<label><input type ="radio" name="music" value="jazz"
checked="checked" />Jazz</label>
<label><input type ="radio" name="music"
value="classical" />Classical</label>
<label><input type ="radio" name="music" value="folk" />Folk</label>

Indicate your choice of music:

Jazz Classical Folk
The transmitted form is the same in both cases. It is possible to separate the labels from the input
devices while keeping the close association between the label and the device. This is frequently the
case when styling is being used to improve the layout. Here is a simple example:

<p>Indicate your choice of music:</p>
<label for="jz">Jazz</label>
<label for="cl">Classical</label>
<label for="fl">Folk</label>
<label for="fl">World</label>
<input id="jz" type ="radio" name="music" value="jazz"
checked="checked" />
<input id="cl" type ="radio" name="music" value="classical" />
<input id="fl" type ="radio" name="music" value="folk" />

Indicate your choice of music:

Jazz Classical Folk World
The user now has the choice of clicking on the radio button or the label itself. This is a slightly contrived
example so the benefits are not that obvious in this rather simple example. Note that we have put two
labels to point to the third button thus lumping world music in with folk.

nmlkj nmlkj nmlkj

nmlkj nmlkj nmlkj

-- 39 --
© Oxford Brookes University 2003

For long forms with many inputs, some structure can be added to parts of the form using the fieldset
and legend elements. The first groups a set of inputs and the second gives them a title. For example:

<fieldset>
<legend>Personal Details</legend>
<p><label><input name ="NAME" type="text" size="40"
maxlength="40" />Name:</label></p>
<p><label><input name ="EMAIL" type="text" size="40"
maxlength="40" />Email:</label></p>
</fieldset>
<p> </p> <fieldset>
<legend>Musical Interests</legend>
<p>Indicate your choice of music:</p>
<label for="jz">Jazz</label>
<label for="cl">Classical</label>
<label for="fl">Folk</label>
<label for="fl">World</label>
<input id="jz" type ="radio" name="music" value="jazz"
checked="checked" />
<input id="cl" type ="radio" name="music" value="classical" />
<input id="fl" type ="radio" name="music" value="folk" />
<p>Indicate why you like this music</p>
<p><textarea name="para" rows="7" cols="60" >abc</textarea></p>
</fieldset>

This would be displayed something like:

A box has beeen added around the two parts of the form and the legend displayed at the top of each
part.

Name:

Email:

Personal Details

Indicate your choice of music:

Jazz Classical Folk World
Indicate why you like this music

Musical Interests

nmlkji nmlkj nmlkj

abc

-- 40 --
© Oxford Brookes University 2003

9.7 The button Element

<button name= value= type= >

The buttons that can be produced using the input element are not that glamorous and, in consequence,
a button element was defined to replace the input element of types button, submit and reset. In no
type is defined, a submit is produced. The functionality is identical to the input element except that it
can have any content that you like in defining the information to be displayed on the button. For
example:

<button name="form" value="submit" type="submit" >
<h2>MUSIC FORM</h2>
<h3>Submit to Server Now</h3>
</button>

This might appear as:

As you now have complete control over the content of the button, it can be styled in much the same way
as a Web page. Here, some styling has been added to the two HTML elements just to give it a bit more
of an effect. The user could add images, background colours, and whatever else is required to produce
the desired effect. Most browsers have also added some goodies to the button such as giving it a
shadow to give the impression that the button has been physically pressed.

9.8 Summary
That completes the description of the forms section of the Primer. It does not give the complete picture.
Some of the facilities associated with scripting have been dealt with in a rather simplistic way. This is
more appropriate for a detailed discussion concerning scripting. Similarly, there are a number of facilities
concerning focus to enable a user with accessibility problems to easily move through a form filling in the
sections. This is particularly appropriate for users with mobile phones or using a text-to-speech browser.
These will be dealt with in the discussion of accessibility.

MUSIC FORM

Submit to Server Now

-- 41 --
© Oxford Brookes University 2003

10. The Document Head

l 10.1 Introduction
l 10.2 The title Element
l 10.3 The meta Element
l 10.4 Scripting
l 10.5 The style Element
l 10.6 The link Element
l 10.7 The base Element

10.1 Introduction
In an HTML document, the head element contains a set of elements that are not concerned with the
content of the web page but give additional meta information related to styling, what the page contains,
how it is related to other pages etc. The set of elements allowed in the head of the document are:

title
The title of the document.

meta
Defines a set of metadata associated with the document. It is of use to browsers, search engines,
editors etc.

script
Defines a script to be associated with the Web page. Although not part of the head, the noscript
element will also be described.

style
Defines a style sheet to be used by the document

link
Defines document relationships

base
resolves relative URLs

10.2 The title Element

<title >

The title element must be present in a document for it to be legal HTML. It serves to identify the
document and it is normal for the browser to add the title to its own decoration at the top of the browser
window. When a user stores a page in a bookmark (or favourites) list, the bookmark will be identified
with the title of the document. In consequence, the title chosen should place the document in its context.

10.3 The meta Element

<meta name= content= http-equiv= scheme=/>

The meta element is a major way that a search engine locates pages. Browsers are not required to
support the meta element so there are few hard and fast rules about what is allowed and what it does.
In many cases it may be browser or search engine specific. The two attributes name and content
define a property and its value. As HTML does not define any values that the attribute name can take, it
is largely up to the users of the page to decide what to do with the information. Here is an example of a
typical web site aiming to get itself recognised by the search engines (http://www.equineworld,co.uk):

-- 42 --
© Oxford Brookes University 2003

<html>
<head>
<title>Horses and ponies, UK</title>
<meta name="description" content="Horses and Ponies: about horses,
ponies, horse riding and equestrianism in the UK. Horses for sale,
equestrian news, equine care, horse chat and more.">
<meta name="keywords" content="horses, horse, equestrian, equine,
ponies, pony, horses for sale, uk">
<meta name="robots" content="index, follow">
<!--Horses and Ponies: about horses, ponies, horse riding and
equestrianism in the UK. Horses for sale, equestrian news, equine care,
horse chat and more.-->
<meta name="owner" content="Equine World UK Ltd">
<meta name="subject" content="horses and ponies, uk">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
<meta http-equiv="PICS-Label" content='(PICS-1.1
"http://www.icra.org/ratingsv02.html" l gen true for
"http://www.equine-world.co.uk" r (ca 1 lz 1 nz 1 oz 1 vz 1)
"http://www.rsac.org/ratingsv01.html" l gen true for
"http://www.equine-world.co.uk" r (n 0 s 0 v 0 l 0))'>

There are two main types of search engines. One set crawl the web looking at pages while the other
type tries to get some human cataloguing of the information. Many of the ones used today are a mixture
of both approaches. The web crawl involves looking at pages and following links to other pages. The
better ones may look at all the text on a page. The worst ones start at the top and may only look at the
head of the document. The meta element is one of the elements that some search engines look for. But
do not assume that by using lots of meta elements you are sure to be recognised. Search engine
spamming is a problem. if you add words to get your pages listed in a search, the search engines will
detect that so make sure any words you use in the meta information are appropriate. For a commercial
web site, it is essential that for a relevant query, the site gets ranked in the top 10. If you land up on the
second page, you are close to death! So target keywords important for your site must be in the title of
the page and in the meta information. Search engines have realised that meta information can be rigged
and so the use of this information by search engines is getting less and less important. For example,
neither Google or Alta Vista use meta element information to rank web pages any more. On the other
hand, Inktomi does. Most read and use the information in the meta elements in some way. The two
most important properties defined by the name attribute are description and keywords. If the search
engine believes the page is honest, it will use the description in place of one that it might try to derive
from its own activities. In the example above, the description aims to give a good overview of the whole
site. It is clear that the site is about both horses and ponies, that people in the UK are most likely to be
interested, that you can buy a horse there and so on. The keywords property tries to guess the kinds of
searches that people who need to find this site might type.
The robots property is primarily aimed at stopping robots visiting pages of no value If the content is set
to noindex robots will not visit the page. In the example, the author has requested a robot to index the
page and follow any links on the page. You may wonder why the author has put a comment containing
all the keywords after the meta information itself. As some search engines do not look at meta
information and believe information near the top of the page is most important, adding the comment
effectively acts as a meta element for those search engines.
Some of the other values of the name attribute are:

-- 43 --
© Oxford Brookes University 2003

author
The author's name

generator
The tool used to create the page

formatter
Similar to generator

copyright
Copyright statement

owner
Equivalent to a copyright statement

subject
Similar to tile

It is difficult to be precise as anybody is allowed to dream up values and there usefulness is dependent
on industry using them as de facto standards. A set of standard terms would have made the meta
element more useful.
A good site for further information about search engines and what they do is
http://www.searchenginewatch.com/.
The attribute http-equiv effectively defines an HTTP header which controls the action of the browser
receiving the page and is used to refine the information provided by the actual headers in the HTTP.
Some servers translate the meta information into actual HTTP headers automatically. In the example
above, the meta elements define the content type of the page and its PICS label (this will be covered in
the discussion of metadata). Other possibilities might be:

<meta http-equiv="expires" content=" Wed 28 Feb 2002 23:59:59 GMT">
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Refresh" content="0;URL=http://www.newurl.com">
<meta http-equiv="Set-Cookie"
content="cookievalue=xxx;expires=Wednesday, 28-Feb-02 18:12:20 GMT;
path=/">

The first states when the page is no longer valid. The second stops Netscape caching the information.
The third states when the page should be refreshed and the fourth defines a cookie. Fuller details of
what is possible is defined in HTTP.
The scheme attribute has been added as a qualifier on what the meta information means. For example:

<meta scheme="ISBN" name="identifier" content="0-201-17805-2">

This states that to interpret the meaning of identifier and the number, you need to realise that the
scheme being used is the ISBN classifications scheme. By knowing this, the meta information can be
correctly interpreted as the book Raggett on HTML 4.

10.4 Scripting

<script type= src= >
<noscript >

To a large extent, scripting is outside the scope of this Primer. Suffice is to say that scripts can be
placed in either the head or the body of the HTML document. Several scripts can be provided at
different points in the page but effectively all the scripts are put together as one script associated with
the page. Putting the script in the head of the page is more elegant but may not be the best place.
Remember that search engines do not normally read the whole page. In consequence if you have a long
script associated with your page, it is possible that all the search engine reads is a load of non-English
rubbish as far as it is concerned. An example use is:

-- 44 --
© Oxford Brookes University 2003

<script type="text/vbscript"
src="http://www.w3.org/script/script.js" />

Here the script is defined external to the document. The type indicates the MIME type of the script

<script type="text/javascript">
. . . </script>

In this case the script is enclosed between the start and end tags. The body element has an attribute
that can cause the script to be executed when the page is loaded or unloaded:

<body onload="processscript()">
<body onunload="processscript()">

Most elements have the ability to define a script invocation on being clicked or moved over. For
example:

<h1 onclick="ps()">ABC</h1>
<p onmousedown="ps()">ABC</p>

The complete set of events are:

onload
Occurs when the browser completes the page load. Only available on the body element.

onunload
Occurs when the browser unloads the page. Only available on the body element.

onclick
Occurs when the mouse button is clicked over an element.

ondblclick
Occurs when the mouse button is double clicked over an element.

onmousedown
Occurs when the mouse button is pressed over an element.

onmouseup
Occurs when the mouse button is released over an element.

onmouseover
Occurs when the mouse is moved over an element.

onmousemove
Occurs when the mouse is moved while it is over an element.

onmouseout
Occurs when the mouse is moved away from an element.

onfocus
Occurs when an element receives focus. To be described under Accessibility

onblur
Occurs when an element loses focus. To be described under Accessibility

onkeypress
Occurs when a key is pressed and released over an element

onkeydown
Occurs when a key is pressed over an element

onkeyup
Occurs when a key is released over an element

onsubmit
Occurs when a form is submitted

onreset
Occurs when a form is reset

-- 45 --
© Oxford Brookes University 2003

onselect
Occurs when a user selects some text in either the input or textarea elements

onchange
Occurs when a device loses focus and its value has changed since gaining focus

10.5 The style Element

<style type= >

The style element defines a stylesheet to be used by the document in much the same was as the script
element defines a script. An example is:

<style type="text/css" media="print"> . . . </style>

The type attribute defines the type of stylsheet following and the media attribute indicates to which
media it applies.

10.6 The link Element

<link href= type= media= hreflang= charset=/>

The link element has been available in HTML almost since the beginning. the intention was that the
element would give information concerning how this page relates to other pages. As two pages can
each link to the other, it is not always obvious which is the parent and which is the child. The link
element was designed for that purpose and the hope was that search engines would use the link
information to improve search relevance. To a large extent it is not used in that role. However there are
some specific uses of the link element:

<link href="../primerstyle.css" rel="stylesheet" type="text/css"
media="print"/> <link rel="alternate" hreflang="pt" type="text/html" />
<link rel="alternate" hreflang="ar" charset="ISO-8859-6"
type="text/html" />

The first example shows a link to an external stylesheet to be used when the document is printed. The
second gives an alternative to the current page in Portuguese. The third links to an alternative page in
Arabic. In this case, the character set needs to be defined also. Search engines may offer the linked
pages when the user as requested pages in a specific language.

10.7 The base Element

<base href= />

The base element provides the base for relative URLs. For example:

<base href="http://www.w3.org/nuts/index.htm" />
. . . < a href="../brazil/origin.htm" />

This would take the relative URL and, as the base element is declared, the relative URL will be resolved
to:
http://www.w3.org/brazil/origin.htm
by effectively treating the current page as though it were the one defined by the base element.

-- 46 --
© Oxford Brookes University 2003

11. Creating HTML

The main tool that you need to write HTML is a text editor. There are other tools on the market but most
come with some kind of health warning. For example, it is possible to write a Web page using Microsoft
Word. Suppose the aim is to produce:

<html>
<head>
<title>My First Web Page</title>
</head>
<body>
<h1>My Title</h1>
<p>My first paragraph</p>
</body>
</html>

Using Word's built in heading and paragraph styles and saving as a Web page produces:

<html xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:w="urn:schemas-microsoft-com:office:word"
xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv=Content-Type content="text/html; charset=windows-
1252">
<meta name=ProgId content=Word.Document>
<meta name=Generator content="Microsoft Word 9">
<meta name=Originator content="Microsoft Word 9">
<link rel=File-List href="./MyParagraph_files/filelist.xml">
<title>My Paragraph</title>
<style>
<!--
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{mso-style-parent:"";
margin:0in;
margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:"Times New Roman";
mso-fareast-font-family:"Times New Roman";}
h1
{mso-style-next:Normal;
margin-top:12.0pt;
margin-right:0in;
margin-bottom:3.0pt;
margin-left:0in;
mso-pagination:widow-orphan;
page-break-after:avoid;
mso-outline-level:1;
font-size:16.0pt;
font-family:Arial;
mso-font-kerning:16.0pt;}

-- 47 --
© Oxford Brookes University 2003

@page Section1
{size:595.3pt 841.9pt;
margin:1.0in 1.25in 1.0in 1.25in;
mso-header-margin:35.4pt;
mso-footer-margin:35.4pt;
mso-paper-source:0;}
div.Section1
{page:Section1;}
-->
</style>
</head>
<body lang=EN-GB style='tab-interval:.5in'>
<div class=Section1>
<h1>My Paragraph</h1>
<p class=MsoNormal>My first paragraph</p>
<p class=MsoNormal><![if !supportEmptyParas]> <![endif]><o:p></o:p></p>
</div>
</body>
</html>

Some Microsoft specific comments have already been removed but the increase in size is from about
120 bytes to well over 1000 bytes, a 10-fold increase in size and time to download. This is a bit unfair as
Word was not designed to produce Web pages so maybe it would be better to use Front Page. The
result then is:

<html>
<head>
<meta http-equiv="Content-Language" content="en-gb">
<meta http-equiv="Content-Type" content="text/html; charset=windows-
1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>My Title</title>
</head>
<body>
<h1>My Title</h1>
<p>My first paragraph</p>
</body>
</html>

This is significantly better than Word. The number of characters is now around 330 compared with 120
but it has increased the size and download time by a factor of 3 while adding to the content of the
document almost nothing. To be fair, the HTML markup apart from the meta information is quite good
with no superfluous information.
There are some specific HTML editors that just produce the HTML mark-up you ask for and nothing
more. One of those is HTML-Kit (http://www.chami.com/html-kit/. It does not protect the user from
writing illegal HTML but does allow you to send the file to a Validator such as Tidy which then updates
the file and shows the original and altered files on the screen side by side. It has a number of word
processing facilities such as spell checking.

-- 48 --
© Oxford Brookes University 2003

12. Frames

For completeness, it is probably necessary to talk about frames in HTML although they are not part of
strict XHTML. Frames were introduced by Netscape as a way of solving the download problems caused
by large pages with many images. If a page had a set of buttons for navigation and a set of logos to
display, quite a bit of the information on the page would not change from page to page. The solution is
to break the browser's window into a set of rectangular areas and allow each to be updated
independently.
The HTML document now looks something like this:

<html>
<title>The Title</title>
<frameset>
<frame />
<frame />
<frame />
</frameset>
<noframes>
<body>
- - -
</body>
</noframes>
</html>

The attributes of the frameset define how the window of the display is to be broken up:

l rows: defines the number of rows
l cols: defines the number of columns

Both attributes have a comma separated list of values that define the size of each row or column
respectively. These values can be one of the following types:

l integer: defines the size as a number of pixels
l percentage: defines the size as a percentage of the available area
l integer *: defines the size as a fraction of the available space
l *: same as 1*

For example:

<frameset cols="100, 10% , *, 3*">

If the window was 800 pixels wide, this would divide the area into four columns. The first would be 100
pixels wide, the second 80 pixels wide, the third would be 155 pixels and the fourth 465 pixels. The
remaining space has been divided up in the ratio 1:3 between the last two columns. If both the cols and
rows attributes are defined, the frames go from left to right and top to bottom. Within the frameset
element are a sequence of frame elements that define the contents of each frame.
The frame element defines the source for the contents of the frame and defines a name for the frame.
For example:

<frameset rows="20%,30%,50%>
<frame name="frame1" src="contents1.htm" scrolling="no">
<frame name="frame2" src="contents2.htm" scrolling="no">
<frame name="frame3" src="contents3.htm" scrolling="yes">
</frameset>

The three frames appear side by side with the contents defines by the three HTML files. The third one
will have scroll bars while the first two will not.

-- 49 --
© Oxford Brookes University 2003

Frames mainly make sense where the contents of one frame cannot update the contents of another.
The obvious example is where, say, the first frame contains a list of links that define the contents of
another frame. the links always remain and hitting a link updates the other frame. This is achieved by
defining an attribute target which specifies the name of the frame to be updated. For example the
contents of the first frame might be:

<html>
<title>Contents1.htm</title>
<body>
 Action a
 Action b
 Action c
 Action d
</body>

Whichever link is hit in the first frame results in the contents of the third frame being updated.
Sometimes you want to get out of the frame hierarchy. To aid this, there are some predefined values of
the target attribute:

_blank
The document is opened in a new window.

_self
The document is opened in the same frame as the link that was made.

_parent
The document is opened in the parent of the current frame.

_top
The document is opened in the complete browser window.

The need for the last of these is because framesets can be defined within framesets so that you may
have to go up an unknown number of levels to break out of the current set of frames.
It is difficult to define frames that are accessible. Some organisations like RNIB believe that they should
never be used although W3C is not quite so dogmatic. If you can avoid using them do so. The least that
should be done is to include a version of the document as a noframes element which could be used by
Braille, line mode or spoken browsers.
UK Government web sites have the following structure:

<html>
<head>
<title>XXX Department</title>
</head>
<frameset rows="40,*">
<frame name="ukonline_toolbar" title="Latest news"
src="http://www.toolbar.e-envoy.gov.uk/standard-toolbar.htm" />
<frame name="ukonline_content" title="home page of XXX"
src="XXXHome.htm" />
<noframes>
<body>
<p>Welcome to the XXX web site
Enter the site
or go to the UK online Citizen
Portal.</p>
</body>
</noframes>
</frameset>
</html>

-- 50 --
© Oxford Brookes University 2003

This adds a UK Government Logo and ticker tape news feed to all Government web sites in the top 40
pixels leaving the remainder for the Department's own content. The noframes version allows you to
enter the site directly ignoring the ticker tape feed if you do not require it.
If you do not need the whole frame mechanism and just want to insert a single frame in an existing
page, this can be achieved using the iframe element. For example:

<iframe name="inframe" width="240" height="250" scrolling="no"
src="page.htm" >

Links can be targetted at an iframe in the same way as a normal frame. It does reduce the frame
overhead for simple usage.

-- i --
© Oxford Brookes University 2003

Appendix A

References
There are some useful Web sites and books relevant to HTML:

1. http://www.w3.org/MarkUp/
The W3C HTML Web Site which contains up-to-date links to anything relevant to HTML.

2. http://www.w3.org/TR/html4/
HTML Level 4.01 Recommendation, the latest version of HTML, 24 December 1999.

3. Ragget on HTML4 (2nd Edition), Dave Raggett, Jenny Lam, Ian Alexander, Michael Kmiec
Addison Wesley, 1998.

4. Big Book of World Wide Web Recs, Peter Loshin
Morgan Kaufman, 2000.

5. Web Protocols and Practice, Balachander Krishnamurthy, Jennifer Rexford
Addison Wesley, 2001.

6. XML How to Program, Deitel, Deitel, Nieto, Lin and Sadhu
Prentice Hall, 2000.

7. http://www.w3.org/People/Raggett/tidy/, W3C's Tidy Tool that produces legal HTML and tidies up
the document

8. http://validator.w3.org/, W3C's Validation Service for Web Pages
9. http://www.w3.org/TR/xhtml1/

XHTML Level 1.0 Recommendation, a reformulation of HTML as an XML Application, 26 January
2000

-- ii --
© Oxford Brookes University 2003

B: Quick Reference Guide
This Appendix lists all the elements available with the following information:

1. Element name: if the name is bold it signifies that all the global attributes are allowed.
2. Type: type of element. Possibilities are block-level, inline and ...
3. Attributes: lists attributes specific to this element and also which other more general attributes

are allowed.
4. Allowed in content: those elements that can be contained directly by this element

The content allowed within an element has the following abbreviations:

[block-level]
p h1 h2 h3 h4 h5 h6 ul ol dl div pre hr blockquote address fieldset table form

[inline]
a br span bdo object img map em strong dfn code q sub sup samp kbd var cite abbr acronym

[empty]
Element has no content

Two elements are allowed anywhere script, noscript

Element
Name

Type Attributes Allowed
in content

a inline charset type name href hreflang rel rev
accesskey shape coords tabindex
onfocus onblur

[inline] but not a element

abbr inline [inline]

acronym inline [inline]

address block-
level

[inline]

area shape coords href alt [empty] alt is required

base head href id [empty] only one allowed

blockquote block-
level

cite [block-level]

body block-
level

onload onunload [block-level]

br inline id class style title [empty]

button inline name value type disabled tabindex
accesskey onfocus onblur

[block-level] [inline]

caption [block-level] [inline]

cite inline [inline]

code inline [inline]

col align span width [empty]

colgroup align span width col

dd block-
level

[block-level] [inline]

dfn inline [inline]

-- iii --
© Oxford Brookes University 2003

Element
Name

Type Attributes Allowed
in content

div block-
level

[block-level] [inline]

dl block-
level

dt dd

dt block-
level

[inline]

em inline [inline]

fieldset [block-level] [inline] form legend

form block-
level

action method enctype onsubmit
onreset accept accept-charset

[block-level] form not allowed inside

h1 to h6 block-
level

[inline]

head head lang xml:lang dir xmlns script style meta link object title base
(Only one title and base)

hr block-
level

[empty]

html root lang xml:lang dir xmlns head body

img inline src alt longdesc height width usemap [empty]

input inline name type value size maxlength
checked disabled readonly src alt
usemap tabindex acceskey onfocus
onblur onselect onchange accept
accesskey

[empty]

label for accesskey onfocus onblur [inline] label

legend accesskey [inline]

li block-
level

[block-level] [inline]

link head charset href hreflang type rel rev media
lang xml:lang dir xmlns

[empty]

map name [block-level] id attribute is required

meta head http-equiv name content scheme id
lang xml:lang dir xmlns

[empty]

noscript block-
level
inline

[block-level]

object inline data type standby height width usemap [block-level] [inline] param

ol block-
level

li

optgroup disabled label option

option selected disabled label value text only

-- iv --
© Oxford Brookes University 2003

Element
Name

Type Attributes Allowed
in content

p block-
level

[inline]

pre block-
level

xml:space [inline] (Not allowed: img object sub
sup)

q inline [inline]

samp inline [inline]

script head
block-
level
inline

charset type src defer xml:space only text

select name size multiple disabled tabindex
onfocus onblur onchange

optgroup option

span inline [inline]

strong inline [inline]

style head type media title xml:space text only (See CSS for text syntax)

sub inline [inline] (Not allowed in pre)

sup inline [inline] (Not allowed in pre)

table block-
level

summary width border frame rules
cellspacing cellpadding

caption col colgroup thead tfoot tbody tr
(caption followed by col and colgroup
elements in any order, then thead, tfoot
and tbody or tr elements if tbody
omitted)

tbody tr

td align rowspan colspan valign [block-level] [inline]

textarea name rows cols disabled readonly
tabindex accesskey onfocus onblur
onselect onchange

text only

tfoot align
valign

tr

th align rowspan colspan valign [block-level] [inline]

thead align
valign

tr

title head lang xml:lang dir xmlns text only (only one allowed)

tr align
valign

td th

ul block-
level

li

var inline [inline]

-- v --
© Oxford Brookes University 2003

C: Deprecated Attributes
This Appendix lists the deprecated attributes and the elements to which they apply. These will still
appear in HTML documents but their function can be achieved by styling. Future versions of HTML are
likely not to support them.

Element Name Deprecated Attributes

address align

blockquote align

body background text link vlink alink bgcolor

br clear

caption align

col align

colgroup align

dd align

div align

dl align

dt align

form align

h1 to h6 align

hr align noshade size width

html version

img hspace vspace border align

input align

legend align

li type value compact

noscript align

object hspace vspace border align

ol type start compact

p align

pre width

script align language

table align bgcolor

tbody

td nowrap width height bgcolor

tfoot

th nowrap width height bgcolor

thead

tr bgcolor

ul type compact

